
Efficient Asian Option Pricing with CUDA
Artur Yuzhanin, Ivan Gankevich, Eduard Stepanov, Vladimir Korkhov

Faculty of Applied Mathematics and Control Processes
St. Petersburg State University

St. Petersburg, Russian Federation
artur.yuzhanin@gmail.com, igankevich@ya.ru, e.an.stepanov@gmail.com, vladimir@csa.ru

POSTER PAPER

In this paper the Monte Carlo methods of the Asian option pricing
are considered. Among them are pricing method with path
integral and partial differential equation. Simulation algorithms
running on the CPU sequentially and algorithms running on the
GPU in parallel using the CUDA technology were analyzed and
compared.

Asian option; Black–Scholes–Merton model; Black–Scholes
equation; path integral; partial differential equation; CUDA;
parallel computing;

I. INTRODUCTION
In order to solve scientific and engineering problems,

amounts of computations increases extremely fast, and therefore
new approaches, such as new mathematical models and
computing technologies are required to be improved or created,
to cope with assigned tasks.

For that purposes in economics Fischer Black, Myron
Scholes and Robert Merton developed Black–Scholes–Merton
model in 1973, which gives theoretical estimate of the price for
European-style options with Black–Scholes equation [1], [2].
Unfortunately, in the case of non-European-style options, for
example Asian, which is kind of exotic option, the analytical
solution of Black – Scholes equation is not possible to deduce,
so the price of non-European-style options cannot be obtained.
In order to solve this problem, Monte Carlo methods (MC) were
developed. The implementation of MC requires a lot of
computational power.

To speed up the computation-intensive tasks (such as MC
simulations), new approaches, such as SIMD (Single Instruction
Multiple Data) and SIMT (Single Input Multiple Thread), have
been suggested. Large computing clusters implement SIMD,
whereas SIMT is implemented in GPGPU, for example, by
Nvidia CUDA. CUDA supports Linux and Windows operation
systems and а several programming languages C++, Python and
Fortan. Since CUDA released, it has been successfully used in
problems of computation in finite difference schemes for
differential equations [3], objects recognition problems [4],
neural networks problems [5], etc. Therefore, we tried to
decrease the computational costs of the MC methods of the
Asian option pricing with CUDA technology.

II. GENTLE INTRODUCTION TO OPTIONS
Option is a contract, under which a buyer acquires the right

to buy or sell the financial instrument, called the underlying
asset, at a pre-agreed price at some point of time in the future,

which is determined by the contract. The seller sells his
obligation to buy or sell an asset.

The Black – Scholes equation in the case of the Asian option.

𝜕𝐶

𝜕𝑡
=

1

2
𝜎2𝑆2

𝜕2𝐶

𝜕𝑆2
+ 𝑟𝑆

𝜕𝐶

𝜕𝑆
+ 𝑆

𝜕𝐶

𝜕𝐴
− 𝑟𝐶 = 0

The Problem of the option pricing involves the determining
the following basic definitions and designation:

 𝑆 (𝑆0) is the (current) price of the underlying asset,

 𝑟 is the risk-free interest rate,

 𝜎 is the volatility (the statistical measure of the tendency
of the variability of the price),

 𝐶(𝑆, 𝐴, 𝑡) is the option price,

 𝐴(𝑆, 𝑡) is the summed set of the prices of the asset at the
every moment of the time of the monitoring,

 𝑡 is a time in years.

To estimate theoretical price of an option the following are
also required:

 𝑇 is the expiration (the date or the period of time, in
which a seller is to fulfill the obligations under the
option contract),

 𝐾 is the exercise price of an option at which the owner
of the option can buy or sell the asset in the future.

The Asian option is based on the idea of the amount of the
payment, which is determined by the average price of the asset
for a period. In majority cases, the average price is defined as the
arithmetic average:

𝐴(0, 𝑇) =
1

𝑇
∫ 𝜔(𝑡)𝑑𝑡

𝑇

0



In the case of discrete points of monitoring at the moments
in time (𝑡1,, 𝑡2, … , 𝑡𝑛):

𝐴(0, 𝑇) =
1

𝑇
∑ 𝜔(𝑡𝑖)

𝑛

𝑖=0

978-1-4673-7813-0/15/$31.00 ©2015 IEEE 623

III. PREPARING COMPUTATION

TABLE I. DEVICE’S CHARACTERISTICS

Specification type Value

Model GeForce GT 630M 2 GB GDDR5

Die name GF117 GL

Architecture Fermi

Fabrication process 40 nm

Memory clock (effective) 900 (3600)MHz

Memory bandwidth 57.6 GB/s

CUDA Compute Capability 2.1

Shared Memory Size 48 KB

CUDA cores 96

Single presision compute power 307.2 GFLOPS

Figure 1. The dependence of the standard deviation of a European option
prices on the number of tests in the Monte Carlo. Stochastic differential

equations.

An important point in a MC simulation is the choice of the
random number generator. CUDA provides cuRand library and
five random number generators, four of which are pseudo-
random number generators (PRNG) and one is quasi-random
number generator (QRNG) [6].

There are several fundamental differences between
implementations of a QRNG and a PRNG. When using a
PRNG, the probability of the generating each random variable
in the range [0, 𝑅𝐴𝑁𝐷_𝑀𝐴𝑋] is constant. Generation of some
random variable does not affect the probability of being
generated in the future steps.

Thus, we can say the random sequences created by a PRNG are
statistically independent.

Figure 2. The dependence of the elapsed time of CUDA algoritm on amount
of test in MC. Stochastic differential equations. European option.

In the case of a QRNG usage, when some random variable
is generated, the probability of getting the same random
variable at the next step decreases. Therefore, the random
variables generated by QRNG are more evenly distributed
within the generation interval, that also has a positive effect in
the case of a QRNG usage in a MC simulations [7], [8], [9].
Figure 1 confirms that fact: in the case of the Sobol’s QRNG
usage the standard deviation of the option price decreases faster
than in the case of the XORWOW PRNG usage. Figure 2 also
illustrates what the Sobol’s QRNG is almost the fastest RNG
presented by cuRand. Therefore, the Sobol’s QRNG is used
throughout this paper.

In addition, we tested every algorithms with sets of data,
where every parameter is the uniformly distributed random
variable over the several intervals.

We implemented serial algorithms with pure C++.

IV. MONTE-CARLO METHODS OF NUMERICAL PROCESSING
AND CUDA IMPLEMENTATION

The trivial model of the parallelization is to transfer all input
data (current prices, risk rates etc.) to the device memory and to
make one thread process the price of one option. Then launch
the kernel function, which implements full algorithm, with
sufficient amount of the threads.

A. Some optimization notes.
We improved the performance with another computation

model: we used two kernel functions in this implementation
(which are computing_kernel and pricing_kernel will be
considered a few later). It is possible to implement the full
algorithms using one kernel function only, but dividing the
kernel into separate few kernels causes several possibilities for
optimization and hence a performance increasing.

CUDA allows threads to cooperate with each other within
the block and a buffer in the shared memory makes this

624

cooperation possible. In addition, an option price is calculated
with a threadblock, not only a thread, and calculated prices are
stored in the shared memory. This approach provides more
efficiency by using decreasing of the accesses to the global
memory, than trivial parallel model. Then the average of the
obtained prices over all threads within the block is calculated
using classic parallel reduction algorithm. Obtained values
transfer back to the global memory between kernel calls.
Between kernel calls values transfer back to the global memory.

Required constants and data are stored in the constant and
the local memory.

It is also important to select the block size properly. It is
recommended to set the block size as an integer multiple of
warp size.

Moreover, before the kernel starts, we have sorted the arrays
of the input data using the CPU in the increasing order of the
elements of the array T. The benefit of it is that sorted this way
array of expiration dates allows to decrease the threads
divergence. Because the kernel is not performed “truly
parallel”. I.e. when the kernel starts, threads are being grouped
into warps and are performed simultaneously within the warp,
if they execute the same instruction. So, if the threads within
warp execute for example two different instructions, threads
with different instruction wait for the threads with another
instruction to proceed. The number of tests in MC method
depends on expiration date. Further, it will be clear with the
algorithms the further the expiration date the more MC tests are
to be done. Therefore, sorting will allow threads to execute in
“more parallel”.

We moved the same for all threads constants to the constant
memory, so program can cache them.

Also we assume what there is 252 trading days in a year.

Consider several MC methods of the calculation the Asian
option price.

B. Pricing using path integral [10], [11], [12].
1) Calculate:

𝑥0 = ln(𝑆0) , 𝜇 = 𝑟 −
𝜎2

2
.

2) Generate random variables 𝑥𝑖 , 𝑖 = 1, 𝑛, with following
densities distribution:

1

√2𝜋𝜎2∆𝑡
exp {−

1

2𝜎2∆𝑡
[𝑥𝑖 − (𝑥𝑖−1 + 𝜇∆𝑡)]2}

3) Use full set (𝑥0, … , 𝑥𝑛, 𝑥𝑛+1) to calculate for 𝑗 = 1, 𝑁

𝐴𝑗 =
∆𝑡

𝑇
∑ ∫ 𝑉(𝜏) 𝜔(𝜏) 𝑒(𝑥𝑘 − 𝑥𝑘−1)𝜏+ 𝑥𝑘−1𝑑𝜏

1

0

𝑛+1

𝑘 = 1

where 𝑉(𝜏) = (1 + 𝜎2∆𝑡(1 − 𝜏)
𝜏

2
)

4) Calculate the option price

𝐶(𝑆, 𝑡) = 𝑒−𝑟𝑇
1

𝑁
∑ 𝑚𝑎𝑥(𝐴𝑗 − 𝐾, 0)

𝑁

𝑗=1

5) Repeat steps until the value of the option price obtained
at the current step not differ from the value obtained in previous
step to a sufficiently small variable

The serial code proceed every option consequentially and
every step of the MC method is proceeded in the same way. We
try to add parallelism with CUDA at the scale of proceeding the
options. It means what all options are proceeded
simultaneously. In addition, every option uses several threads
at the same time, for example, to obtain value at step 3 of the
MC method.

Now let us consider the pseudo-code of the CUDA
implementation of the MC method with path integral.

Algorithm 3. Asian call options pricing, path integral

Input: arrays: S (current prices S0), r (risk-free interest rates), v
(volatilities), T (days to expiration), K (strike prices), P (prices
of option of previous period of monitoring); scalars: nMC
(amount tests in MC method), N (amount of options), Ng
(amount of options could be processed simultaneously over the
grid).
Output: arrays: C

1. Sort arrays S, r, v, T, K, P using quick sort by the elements of
 T as a sorting key
2. Transfer the data from the host memory S, r, v, T, K, P to the
 allocated regions in the global memory dev_S, dev_r, dev_v,
 dev_T, dev_K, dev_P. Allocate memory for dev_C,
 dev_prevC, dev_sum, dev_isDone, dev_isDone_reducted.
 Initialize states of the array of dev_states of
 curandStateSobol32 type
3. nMCPerThread := nMC / blockSize
4. Set sufficient value of eps.
5. Copy nMCPerThread and eps to c_nMCPerThread and
 c_eps variables resided in the constant memory
6. Set stride := N / Ng - 1 and ISDONE := false
7. while ISDONE = false do
8. for jstride = 0 : stride do
9. pricing_kernel <<<gridSize, blockSize>>> (jstride,
 dev_sum, dev_isDone, dev_states, dev_S, dev_r,
 dev_v, dev_K, dev_T, dev_P)
10. end for
11. Synchronize the threads within the grid
12. computing_kernel <<<gridSize, blockSize>>> (dev_C,
 dev_sum, dev_isDone, dev_prevC, dev_r, dev_T)
13. Synchronize the threads within the grid
14. reduction_kernel <<<gridSize, blockSize>>>
 (dev_isDone, dev_isDone_reducted)
15. Synchronize the threads within the grid
16. Transfer data from d_isDone_reducted to
 isDone_reducted
17. If all values in isDone_reducted are set as true then
 ISDONE := true
18. end while
19. Copy values from dev_C to C

We sort the arrays as it was said in the optimization notes
and copy the variables to the fast cache in the constant memory.

625

Since the size of the shared memory is limited by 48kB,
when choosing a block size of 128 threads, we see what tested
GeForce GT630M makes it possible to simultaneously
calculate the price of 192 options only. So, the pseudo-code
above illustrated what with variables Ng and stride. We proceed
192 options simultaneously, then next 192 options and so on.

Also the steps 11 – 17 shows we also use parallel reduction
for the array of the flags of type bool of every option, to ensure
all options has been proceeded. For that purpose, function
reduction_kernel is used. Function computing_kernel (step 12)
implements only step 4 of MC algorithm trivially, therefore
does not worth considering. But we will consider realization of
pricing_kernel, as long as it is not straightforward as in the case
of the reduction_kernel and computing_kernel.

Algorithm 4. Kernel function: pricing_kernel

1. Define the positions of the current thread tid and the block

Figure 3. The dependence of the elapsed time of CUDA algoritm on amount
of test in MC and amount of prices of options calculated sumiltanious. Path

inegral.

Figure 4. Acceleration of computations of CUDA parallel algorithm
relatively serial algorithm. Stochastic differential equation

 bid within the grid. Calculate the size of the block blockSize
 and the position of the thread within the block idx. Set the
 index of the option: optInd := Ng * stride + bid

2. if dev_isDone[optInd] = false do
3. Allocate memory for array sbuffer_c [blockSize] in shared
 memory
4. Copy input data into variables resided in local memory
 localState, rate, vol, price, days
5. constSummand := (rate - vol * vol / 2) * deltaT
6. dev := vol * sqrt(time/ (time + 1) / 252)
 summed_A := 0
7. for iterationCounter := 0 : c_nMCPerThread do
8. sbuffer_c[idx] := log(price)
9. for daysCounter = 1 : time + 1 do
10. Generate standard normal random variable r_val
11. sbuffer_c[idx] := sbuffer_c[idx] +
 constSummand + dev * r_val
12. Compute variable A as integral as described
 at the step 3 of the algorithm.
 summed_A := summed_A + A
13. end for
14. summed_A := summed_A * deltaT / T
15. sbuffer_c[idx] := max(summed_A - strike,0)
16. Synchronize the threads within the block
17. Run the parallel reduction for sbuffer_c array
18. if idx = 0 do
19. dev_sum [optInd] := dev_sum [optInd] +
 (sbuffer_c[idx] / blockSize)
20. end if
21. Synchronize the threads within the block
22. end for
23. dev_states[tid] := localState
24. end if

To generate the random variable with specify densities
distributions we use the Box – Muller transformation (steps 10
– 11). To integrate the expression in the step 3 of the MC
method interpolation Newton polynomial is used. It allows to
construct the function of dynamics of the price of an underlying
asset 𝜔(𝜏). Worth saying, what the bottleneck of this algorithm
is the construction the function 𝜔(𝜏) and the integrating. We
did not use nested parallelism in this paper. It could has positive
effect on efficiency and could be considered in further research.

Then the parallel reduction is used to obtain the average of
prices over the threads within the threadblock (steps 16 - 21).

Figure 3 and Figure 4 shows the elapsed time of the CUDA
implementation and acceleration relatively the serial
implementation. Acceleration is not constant for over set of
variables. CUDA implementation executes 11 – 13 times faster
than serial. Acceleration may increase with increasing
parameters (the tests per thread and amount of options).
Transfer and sorting times are taken into account.

C. Pricing using partial differential equation [13].
1) Construct the grid [0, 𝑆𝑚𝑎𝑥] × [0, 𝐴𝑚𝑎𝑥] by dividing

invervals into 𝑁𝑠 and 𝑁𝑎 subintervals.

626

Figure 5. The dependence of the elapsed time of CUDA algoritm on amount
of test in MC and amount of prices of options calculated sumiltanious. PDE.

2) Calculate:

𝑄𝑖,𝑗,𝑛 =
1

𝜎2𝑆𝑖
2

(∆𝑆)2 +
𝑟𝑆𝑖

∆𝑆 +
𝑆𝑖

∆𝐴

3) Select a point 𝑃 on the grid. Calcualte 𝑝1 , 𝑝2 и 𝑝3

probabilities of transitions from the 𝑃 to 𝑃1, 𝑃2 и 𝑃3 points.

Г𝑖+1,𝑗,𝑛 =
𝜎2𝑆𝑖

2

2(∆𝑆)2 +
𝑟𝑆𝑖

∆𝑆
 𝑝1 = 𝑝𝑖+1,𝑗,𝑛 = Г𝑖+1,𝑗,𝑛 𝑄𝑖,𝑗,𝑛,

Г𝑖−1,𝑗,𝑛 =
𝜎2𝑆𝑖

2

2(∆𝑆)2 𝑝2 = 𝑝𝑖−1,𝑗,𝑛 = Г𝑖−1,𝑗,𝑛𝑄𝑖,𝑗,𝑛,

Г𝑖,𝑗+1,𝑛 =
𝑆𝑖

∆𝐴
 𝑝3 = 𝑝𝑖,𝑗+1,𝑛 = Г𝑖,𝑗+1,𝑛 𝑄𝑖,𝑗,𝑛.

4) Move to the selected point.
a) If during the transitions the sum of the obtained values

𝑄𝑖,𝑗,𝑘 becomes greater than 𝑇, then stop the process. Calculate
the option price:

𝐶(𝑆, 𝐴, 0) = 𝑒−𝑟𝜏 max (
𝐴

𝑇
− 𝐾, 0).

b) Upon reaching one of the borders consider the option
price in the one of the following ways:

𝐶(0, 𝐴, 𝜏) = max (
𝐴

𝑇
− 𝐾, 0),

𝐶(𝑆, 𝐴𝑚𝑎𝑥 , 𝜏) = max (
𝐴𝑚𝑎𝑥

𝑇
− 𝐾, 0) +

𝑆

𝑟𝑇
(𝑒−𝑟𝑇 − 1),

𝐶(𝑆𝑚𝑎𝑥, 𝐴, 𝜏) = max (
𝐴

𝑇
− 𝐾, 0) +

𝑆𝑚𝑎𝑥

𝑟𝑇
(𝑒−𝑟𝑇 − 1),

𝐶(𝑆, 0, 𝜏) =
𝑆

𝑟𝑇
(𝑒−𝑟𝑇 − 1).

c) Otherwise continue the transitions to the next point.
5) When get the set of 𝐶1, 𝐶2, … , 𝐶𝑁, calculate the price of

option
𝐶 = 𝑒−𝑟𝑇 1

𝑁
∑ 𝐶𝑘

𝑁
𝑘=1 .

Pseudo-code of CUDA implementation will be considered
next.

Figure 6. Acceleration of computations of CUDA parallel algorithm
relatively serial algorithm. PDE.

Algorithm 5. Asian call options pricing, partial differential
equation

Input: arrays: S (current prices S0), r (risk-free interest rates), v
(volatilities), T (days to expiration), K (strike prices); scalars:
nMC (amount tests in MC method), N (amount of options), Ng
(amount of options could be processed simultaneously over the
grid)
Output: arrays: C

1. nMCPerThread := nMC / blockSize and copy into
 c_nMCPerThread resided in the constant memory
2. Sort arrays S, r, v, T, K using quick sort by the elements of
 T as a sorting key
3. Transfer the data from host memory S, r, v, T, K, A to
 allocated regions in global memory dev_S, dev_r, dev_v,
 dev_T, dev_K, dev_A
4. Allocate memory for dev_C. Initialize states of array
 dev_states of curandStateSobol32 type
5. for jstride = 0 : N / Ng do
6. for counter = 0 : nMCPerThread - 1 do
7. pricing_kernel <<<gridSize, blockSize>>> (jstride,
 dev_sum, dev_cond, dev_states, dev_S, dev_r,
 dev_v, dev_K, dev_T)
8. Synchronize the threads within the grid
9. end for
10. end for
11. Synchronize the threads within the grid
12. compute_kernel <<< gridSize, blockSize>>> (dev_C,
 dev_r, dev_T)
13. Copy the values from dev_C to C

We prepare to computations at steps 1 – 4. As in the previous
case Ng and jstride are used to proceed just a part of a set of
options. We use compute_kernel to implement step 5 of the MC
method and pricing_kernel for steps 1 – 4 of the method, which
is considered further.

Algorithm 6. Kernel function: pricing_kernel

627

1. Define the positions of the current thread tid and the block
 bid within the grid. Calculate the size of the block blockSize
 and the position of the thread within the block idx. Set the
 index of the option: optInd := Ng * stride + bid
2. Select Amax, Smax, Ns, Na
3. delta_S := Smax/Ns, delta_A := Amax / Na and evalTime := 0
4. Allocate memory for the arrays sbuffer_c [blockSize],
 sbuffer_S [blockSize], sbuffer_A [blockSize] in shared
 memory
5. Copy input data into variables resided in local memory
 localState, rate, vol, price, day, A, sbuffer_c [idx] := price
 and sbuffer_A [idx] := A
6. Select a point on the grid with coordinates
 (sbuffer_c [idx], sbuffer_A [idx]) or closest point.
7. while (done = false) do
8. Chose a point to move to
9. Depends on the selected pointed calculate
 sbuffer_S[idx] := sbuffer_S [idx] + delta_S
 sbuffer_S [idx] := sbuffer_S [idx] - delta_S
 or sbuffer_A [idx] := sbuffer_A [idx] + delta_A
10. evalTime := evalTime + Q
11. if evalTime >= days / 252 or sbuffer_S[idx] =< 0 or
 sbuffer_A[idx] =< 0 or sbuffer_S[idx] >= Smax or
 sbuffer_A[idx] >= Amax do
12. Calculate price of option sbuffer_c[idx] as
 described above.
13. done := true;
14. end if
15. end while
16. Run the parallel reduction for sbuffer_c over the block
17. if idx = 0 do
18. dev_C[optInd] := sbuffer_c[idx] / blockSize
19. end if

According to the description of the algorithm, the most
requested values throughout the algorithm are coordinates of
the point on the grid and the option price. Therefore, transfer of
coordinate values to shared memory and subsequent access to
the fast-accessible shared memory instead of the global memory
is a good idea. (Steps 1 – 8). At the step 11 we mean what steps
2 and 3 of the MC method are implemented. Step 12 illustrates
how the point moves over the grid. If one of the conditions at
step 14 is satisfied, then obtain option price with expression of
4.a or boundary conditions of 4.b.

The bottleneck of this algorithm is the choice of the
parameters Amax, Smax, Ns, Na. We tried Amax as current
value of A multiple 252, Smax as S + 100, Ns and Na could vary.

Then the parallel reduction is used to obtain average price.
Due to Figure 6, the evaluated acceleration is up to 45 times

in comparison with the serial algorithm and does not change
with variety of parameters. Figure 5 also shows dependence of
elapsed time of CUDA implementation of parameters. The
transfer and sorting times are taken into account.

V. CONCLUSIONS
Using CUDA allows increasing performance of computation

even on a weak graphics card. The most important conclusion of
this paper is what field of the application of the proposed
approaches is not limited by the scope of the options price
computing. Proposed approaches of computation could be also
successfully applied, for example, in finite difference schemes
and methods of calculation of the path integrals.

Also worth saying what implementation could be transposed
to newer devices with more advanced architecture. Main
restriction is the size of shared memory. Implementation may be
improved with newer graphic cards mainly due to bigger size of
shared memory.

CUDA allows easy algorithms scaling by variety of kernel
parameters (the size of configured grid and blocks). It is clear
what the more multiprocessors and cuda-cores are available for
computation the more efficient implementations are.

We recommend to use Sobol’s QRNG in order to decrease
standard deviation and not to and avoid loss performance.

For now, the question of the accuracy of the computation of
each method is out of the scope. It is the direction for further
research.

REFERENCES

[1] F. Black, M. Scholes ,“The pricing of options and corporate liabilities”
Journal Political Economy. 1973. Vol. 81. P. 637-659

[2] R.C. Merton, “Theory of rational option pricing” Bell Journal of
Economics and Management Science. 1973. Vol. 4

[3] Richter C, Schops S, Clemens M. “GPU acceleration of finite difference
schemes used in coupled electromagnetic/thermal field simulations”.
IEEE Trans Magn 2013; 49(5):1649–52

[4] Orchard G, Martin J, Vogelstein R, Etienne-Cummings R. “Fast
neuromimetic object recognition using FPGA outperforms GPU
implementations” IEEE Trans Neural Networks Learn Syst 2013;
24(8):1239–52.

[5] Mei S, He M, Shen Z. “Optimizing hopfield neural network for spectral
mixture unmixing on GPU platform” IEEE Geosci Remote Sens Lett
2014; 11(4):818–22.

[6] John Cheng, Max Grossman, Ty McKercher. “Professional CUDA c
programming” ISBN: 978-1-118-73932-7, p. 350

[7] Hongmei Chi, Peter Beerli, Deidre W. Evans, and Micheal Mascagni. “On
the scrambled sobol’s sequences” Lecture Notes in Computer Science
3516, 775-782, Springer 2005

[8] Stephen Joe, Frances Y. Kuo “Remark on algorithm 659: implementing
Sobol’s quasirandom sequence generator” ACM transactions on
mathematical software, Vol. 29, N 1, 2003 , p. 49

[9] Sobol,I.M. "Distribution of points in a cube and approximate evaluation
of integrals". U.S.S.R Comput. Maths. Math. Phys. 7: 86–112 (in
English), Zh. Vych. Mat. Mat. Fiz. 7: 784–802 (in Russian)

[10] Vadim Linetsky , “The path integral approach to financial modeling and
options pricing” Computational Economics 11: 129–163, 1998

[11] Guido Montagna, Oreste Nicrosini, “A path integral way to option
pricing” Physica A: Statistical Mechanics and its Applications Volume
310, Issues 3–4, 15 July 2002, Pages 450–466

[12] Malvin H. Kalos, Paula A. Whitlock “Monte Carlo methods” WILEY-
VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-40760-6

[13] Daniel Zwillinger “Handbook of differential equations”, Academic Press,
1997

628

	MAIN MENU
	Help
	Search
	Print
	Author Index
	Table of Contents

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 14.40 points
 Normalise (advanced option): 'original'

 32

 D:20150619150348
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 14.4000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

