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In this paper the Monte Carlo methods of the Asian option pricing 
are considered. Among them are pricing method with path 
integral and partial differential equation. Simulation algorithms 
running on the CPU sequentially and algorithms running on the 
GPU in parallel using the CUDA technology were analyzed and 
compared. 
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I.  INTRODUCTION 
In order to solve scientific and engineering problems, 

amounts of computations increases extremely fast, and therefore 
new approaches, such as new mathematical models and 
computing technologies are required to be improved or created, 
to cope with assigned tasks. 

For that purposes in economics Fischer Black, Myron 
Scholes and Robert Merton developed Black–Scholes–Merton 
model in 1973, which gives theoretical estimate of the price for 
European-style options with Black–Scholes equation [1], [2]. 
Unfortunately, in the case of non-European-style options, for 
example Asian, which is kind of exotic option, the analytical 
solution of Black – Scholes equation is not possible to deduce, 
so the price of non-European-style options cannot be obtained. 
In order to solve this problem, Monte Carlo methods (MC) were 
developed. The implementation of MC requires a lot of 
computational power. 

To speed up the computation-intensive tasks (such as MC 
simulations), new approaches, such as SIMD (Single Instruction 
Multiple Data) and SIMT (Single Input Multiple Thread), have 
been suggested. Large computing clusters implement SIMD, 
whereas SIMT is implemented in GPGPU, for example, by 
Nvidia CUDA. CUDA supports Linux and Windows operation 
systems and а several programming languages C++, Python and 
Fortan. Since CUDA released, it has been successfully used in 
problems of computation in finite difference schemes for 
differential equations [3], objects recognition problems [4], 
neural networks problems [5], etc. Therefore, we tried to 
decrease the computational costs of the MC methods of the 
Asian option pricing with CUDA technology. 

II. GENTLE INTRODUCTION TO OPTIONS 
Option is a contract, under which a buyer acquires the right 

to buy or sell the financial instrument, called the underlying 
asset, at a pre-agreed price at some point of time in the future, 

which is determined by the contract. The seller sells his 
obligation to buy or sell an asset. 

The Black – Scholes equation in the case of the Asian option. 
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The Problem of the option pricing involves the determining 
the following basic definitions and designation: 

 𝑆 (𝑆0) is the (current) price of the underlying asset, 

 𝑟 is the risk-free interest rate, 

 𝜎 is the volatility (the statistical measure of the tendency 
of the variability of the price), 

 𝐶(𝑆, 𝐴, 𝑡) is the option price, 

 𝐴(𝑆, 𝑡) is the summed set of the prices of the asset at the 
every moment of the time of the monitoring, 

 𝑡 is a time in years. 

To estimate theoretical price of an option the following are 
also required: 

 𝑇 is the expiration (the date or the period of time, in 
which a seller is to fulfill the obligations under the 
option contract), 

 𝐾 is the exercise price of an option at which the owner 
of the option can buy or sell the asset in the future. 

The Asian option is based on the idea of the amount of the 
payment, which is determined by the average price of the asset 
for a period. In majority cases, the average price is defined as the 
arithmetic average: 
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In the case of discrete points of monitoring at the moments 
in time (𝑡1,, 𝑡2, … , 𝑡𝑛): 
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III. PREPARING COMPUTATION 

TABLE I.  DEVICE’S CHARACTERISTICS 

Specification type Value 

Model  GeForce GT 630M 2 GB GDDR5  

Die name GF117 GL 

Architecture Fermi 

Fabrication process 40 nm 

Memory clock (effective) 900 (3600)MHz 

Memory bandwidth 57.6 GB/s 

CUDA Compute Capability 2.1 

Shared Memory Size 48 KB 

CUDA cores 96 

Single presision compute power 307.2 GFLOPS 

 

Figure 1.  The dependence of the standard deviation of a European option 
prices on the number of tests in the Monte Carlo. Stochastic differential 

equations. 

An important point in a MC simulation is the choice of the 
random number generator. CUDA provides cuRand library and 
five random number generators, four of which are pseudo-
random number generators (PRNG) and one is quasi-random 
number generator (QRNG) [6]. 

There are several fundamental differences between 
implementations of a QRNG and a PRNG. When using a 
PRNG, the probability of the generating each random variable 
in the range [0, 𝑅𝐴𝑁𝐷_𝑀𝐴𝑋] is constant. Generation of some 
random variable does not affect the probability of being 
generated in the future steps. 

Thus, we can say the random sequences created by a PRNG are 
statistically independent. 

 

 

Figure 2.   The dependence of the elapsed time of CUDA algoritm on amount  
of test in MC. Stochastic differential equations. European option. 

In the case of a QRNG usage, when some random variable 
is generated, the probability of getting the same random 
variable at the next step decreases. Therefore, the random 
variables generated by QRNG are more evenly distributed 
within the generation interval, that also has a positive effect in 
the case of a QRNG usage in a MC simulations [7], [8], [9]. 
Figure 1 confirms that fact: in the case of the Sobol’s QRNG 
usage the standard deviation of the option price decreases faster 
than in the case of the XORWOW PRNG usage. Figure 2 also 
illustrates what the Sobol’s QRNG is almost the fastest RNG 
presented by cuRand. Therefore, the Sobol’s QRNG is used 
throughout this paper. 

In addition, we tested every algorithms with sets of data, 
where every parameter is the uniformly distributed random 
variable over the several intervals. 

We implemented serial algorithms with pure C++. 

IV. MONTE-CARLO METHODS OF NUMERICAL PROCESSING 
AND CUDA IMPLEMENTATION 

The trivial model of the parallelization is to transfer all input 
data (current prices, risk rates etc.) to the device memory and to 
make one thread process the price of one option. Then launch 
the kernel function, which implements full algorithm, with 
sufficient amount of the threads. 

A. Some optimization notes. 
We improved the performance with another computation 

model: we used two kernel functions in this implementation 
(which are computing_kernel and pricing_kernel will be 
considered a few later). It is possible to implement the full 
algorithms using one kernel function only, but dividing the 
kernel into separate few kernels causes several possibilities for 
optimization and hence a performance increasing. 

CUDA allows threads to cooperate with each other within 
the block and a buffer in the shared memory makes this 
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cooperation possible. In addition, an option price is calculated 
with a threadblock, not only a thread, and calculated prices are 
stored in the shared memory. This approach provides more 
efficiency by using decreasing of the accesses to the global 
memory, than trivial parallel model. Then the average of the 
obtained prices over all threads within the block is calculated 
using classic parallel reduction algorithm. Obtained values 
transfer back to the global memory between kernel calls. 
Between kernel calls values transfer back to the global memory.  

Required constants and data are stored in the constant and 
the local memory.  

It is also important to select the block size properly. It is 
recommended to set the block size as an integer multiple of 
warp size.  

Moreover, before the kernel starts, we have sorted the arrays 
of the input data using the CPU in the increasing order of the 
elements of the array T. The benefit of it is that sorted this way 
array of expiration dates allows to decrease the threads 
divergence. Because the kernel is not performed “truly 
parallel”. I.e. when the kernel starts, threads are being grouped 
into warps and are performed simultaneously within the warp, 
if they execute the same instruction. So, if the threads within 
warp execute for example two different instructions, threads 
with different instruction wait for the threads with another 
instruction to proceed. The number of tests in MC method 
depends on expiration date. Further, it will be clear with the 
algorithms the further the expiration date the more MC tests are 
to be done. Therefore, sorting will allow threads to execute in 
“more parallel”.  

We moved the same for all threads constants to the constant 
memory, so program can cache them. 

Also we assume what there is 252 trading days in a year.  

Consider several MC methods of the calculation the Asian 
option price. 

B. Pricing using path integral [10], [11], [12]. 
1) Calculate: 

𝑥0 = ln(𝑆0) ,   𝜇 = 𝑟 −  
𝜎2

2
. 

2) Generate random variables 𝑥𝑖  , 𝑖 =  1, 𝑛, with following 
densities distribution: 
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3) Use full set (𝑥0, … , 𝑥𝑛, 𝑥𝑛+1) to calculate for 𝑗 =  1, 𝑁 
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where 𝑉(𝜏) =  (1 +  𝜎2∆𝑡(1 −  𝜏)
𝜏

2
) 

4) Calculate the option price 

𝐶(𝑆, 𝑡) =  𝑒−𝑟𝑇
1

𝑁
∑ 𝑚𝑎𝑥(𝐴𝑗 − 𝐾, 0)

𝑁

𝑗=1

 

5) Repeat steps until the value of the option price obtained 
at the current step not differ from the value obtained in previous 
step to a sufficiently small variable 

The serial code proceed every option consequentially and 
every step of the MC method is proceeded in the same way. We 
try to add parallelism with CUDA at the scale of proceeding the 
options. It means what all options are proceeded 
simultaneously. In addition, every option uses several threads 
at the same time, for example, to obtain value at step 3 of the 
MC method. 

Now let us consider the pseudo-code of the CUDA 
implementation of the MC method with path integral. 

Algorithm 3. Asian call options pricing, path integral 

Input: arrays: S (current prices S0), r (risk-free interest rates), v 
(volatilities), T (days to expiration), K (strike prices), P (prices 
of option of previous period of monitoring); scalars: nMC 
(amount tests in MC method), N (amount of options), Ng 
(amount of options could be processed simultaneously over the 
grid). 
Output: arrays: C 

1. Sort arrays S, r, v, T, K, P using quick sort by the elements of 
    T as a sorting key 
2. Transfer the data from the host memory S, r, v, T, K, P to the  
    allocated regions in the global memory dev_S, dev_r, dev_v, 
    dev_T, dev_K, dev_P. Allocate memory for dev_C, 
    dev_prevC, dev_sum, dev_isDone, dev_isDone_reducted. 
    Initialize states of the array of dev_states of 
    curandStateSobol32 type 
3. nMCPerThread := nMC / blockSize  
4. Set sufficient value of eps.  
5. Copy nMCPerThread and eps to c_nMCPerThread and 
    c_eps variables resided in the constant memory 
6. Set stride := N / Ng -  1 and ISDONE := false 
7. while ISDONE = false do 
8.       for jstride = 0 : stride do 
9.             pricing_kernel <<<gridSize, blockSize>>> (jstride, 
                dev_sum, dev_isDone, dev_states, dev_S, dev_r, 
                dev_v, dev_K, dev_T, dev_P) 
10.     end for 
11.     Synchronize the threads within the grid 
12.     computing_kernel <<<gridSize, blockSize>>> (dev_C, 
          dev_sum, dev_isDone, dev_prevC, dev_r, dev_T) 
13.     Synchronize the threads within the grid 
14.     reduction_kernel <<<gridSize, blockSize>>>  
          (dev_isDone, dev_isDone_reducted) 
15.     Synchronize the threads within the grid 
16.     Transfer data from d_isDone_reducted to 
          isDone_reducted 
17.     If all values in isDone_reducted are set as true then 
          ISDONE := true 
18. end while 
19. Copy values from dev_C to C 

We sort the arrays as it was said in the optimization notes 
and copy the variables to the fast cache in the constant memory. 
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Since the size of the shared memory is limited by 48kB, 
when choosing a block size of 128 threads, we see what tested 
GeForce GT630M makes it possible to simultaneously 
calculate the price of 192 options only. So, the pseudo-code 
above illustrated what with variables Ng and stride. We proceed 
192 options simultaneously, then next 192 options and so on. 

Also the steps 11 – 17 shows we also use parallel reduction 
for the array of the flags of type bool of every option, to ensure 
all options has been proceeded. For that purpose, function 
reduction_kernel is used. Function computing_kernel (step 12) 
implements only step 4 of MC algorithm trivially, therefore 
does not worth considering. But we will consider  realization of  
pricing_kernel, as long as it is not straightforward as in the case 
of the reduction_kernel and computing_kernel. 

Algorithm 4. Kernel function: pricing_kernel 

1. Define the positions of the current thread tid and the block  

  

Figure 3.  The dependence of the elapsed time of CUDA algoritm on amount  
of test in MC and amount of prices of options calculated sumiltanious. Path 

inegral. 

 

Figure 4.  Acceleration of computations of CUDA parallel algorithm 
relatively serial algorithm. Stochastic differential equation 

    bid within the grid. Calculate the size of the block blockSize  
    and the position of the thread within the block idx. Set the 
    index of the option: optInd := Ng * stride + bid 
 
2. if dev_isDone[optInd] = false do 
3.       Allocate memory for array sbuffer_c [blockSize] in shared  
         memory 
4.       Copy input data into variables resided in local memory 
          localState, rate, vol, price, days 
5.       constSummand := (rate - vol * vol / 2) * deltaT 
6.       dev := vol * sqrt(time/ (time + 1) / 252) 
          summed_A := 0 
7.       for iterationCounter := 0 : c_nMCPerThread do 
8.             sbuffer_c[idx] := log(price) 
9.             for daysCounter = 1 : time + 1 do 
10.                     Generate standard normal random variable r_val 
11.                   sbuffer_c[idx] := sbuffer_c[idx] +  
                        constSummand + dev * r_val 
12.                   Compute variable A as integral as described 
                        at the step 3 of the algorithm. 
                        summed_A := summed_A + A 
13.           end for 
14.           summed_A := summed_A * deltaT / T 
15.           sbuffer_c[idx] := max(summed_A - strike,0) 
16.             Synchronize the threads within the block 
17.             Run the parallel reduction for sbuffer_c array 
18.             if idx = 0 do 
19.                   dev_sum [optInd] :=  dev_sum [optInd]  +  
                        (sbuffer_c[idx] / blockSize) 
20.             end if 
21.             Synchronize the threads within the block 
22.       end for 
23.       dev_states[tid] := localState 
24. end if 

To generate the random variable with specify densities 
distributions we use the Box – Muller transformation (steps 10 
– 11). To integrate the expression in the step 3 of the MC 
method interpolation Newton polynomial is used. It allows to 
construct the function of dynamics of the price of an underlying 
asset 𝜔(𝜏). Worth saying, what the bottleneck of this algorithm 
is the construction the function 𝜔(𝜏) and the integrating. We 
did not use nested parallelism in this paper. It could has positive 
effect on efficiency and could be considered in further research. 

Then the parallel reduction is used to obtain the average of 
prices over the threads within the threadblock (steps 16 - 21). 

Figure 3 and Figure 4 shows the elapsed time of the CUDA 
implementation and acceleration relatively the serial 
implementation. Acceleration is not constant for over set of 
variables. CUDA implementation executes 11 – 13 times faster 
than serial. Acceleration may increase with increasing 
parameters (the tests per thread and amount of options). 
Transfer and sorting times are taken into account. 

C. Pricing using partial differential equation [13]. 
1) Construct the grid [0, 𝑆𝑚𝑎𝑥] ×  [0, 𝐴𝑚𝑎𝑥] by dividing 

invervals into 𝑁𝑠 and 𝑁𝑎 subintervals. 
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Figure 5.   The dependence of the elapsed time of CUDA algoritm on amount  
of test in MC and amount of prices of options calculated sumiltanious. PDE. 

2) Calculate: 

𝑄𝑖,𝑗,𝑛 =  
1

𝜎2𝑆𝑖
2

(∆𝑆)2 +  
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3) Select a point 𝑃  on the grid. Calcualte 𝑝1 , 𝑝2  и 𝑝3 

probabilities of transitions from the 𝑃 to 𝑃1, 𝑃2 и 𝑃3 points. 

Г𝑖+1,𝑗,𝑛 =  
𝜎2𝑆𝑖

2

2(∆𝑆)2 +  
𝑟𝑆𝑖

∆𝑆
      𝑝1 =  𝑝𝑖+1,𝑗,𝑛 =  Г𝑖+1,𝑗,𝑛 𝑄𝑖,𝑗,𝑛, 

Г𝑖−1,𝑗,𝑛 =  
𝜎2𝑆𝑖

2

2(∆𝑆)2       𝑝2 =  𝑝𝑖−1,𝑗,𝑛 =   Г𝑖−1,𝑗,𝑛𝑄𝑖,𝑗,𝑛, 

Г𝑖,𝑗+1,𝑛 =  
𝑆𝑖

∆𝐴
      𝑝3 = 𝑝𝑖,𝑗+1,𝑛 =  Г𝑖,𝑗+1,𝑛 𝑄𝑖,𝑗,𝑛. 

4) Move to the selected point.  
a) If during the transitions the sum of the obtained values 

𝑄𝑖,𝑗,𝑘 becomes greater than 𝑇, then stop the process. Calculate 
the option price: 

𝐶(𝑆, 𝐴, 0) =  𝑒−𝑟𝜏 max (
𝐴

𝑇
− 𝐾, 0). 

b) Upon reaching one of the borders consider the option 
price in the one of the following ways: 

𝐶(0, 𝐴, 𝜏) = max (
𝐴

𝑇
− 𝐾, 0), 

𝐶(𝑆, 𝐴𝑚𝑎𝑥 , 𝜏) = max (
𝐴𝑚𝑎𝑥

𝑇
− 𝐾, 0) + 

𝑆

𝑟𝑇
(𝑒−𝑟𝑇 − 1), 

𝐶(𝑆𝑚𝑎𝑥, 𝐴, 𝜏) = max (
𝐴

𝑇
− 𝐾, 0) +  

𝑆𝑚𝑎𝑥

𝑟𝑇
(𝑒−𝑟𝑇 − 1), 

𝐶(𝑆, 0, 𝜏) =  
𝑆

𝑟𝑇
(𝑒−𝑟𝑇 − 1). 

c) Otherwise continue the transitions to the next point. 
5) When get the set of 𝐶1, 𝐶2, … , 𝐶𝑁, calculate the price of 

option 
𝐶 =  𝑒−𝑟𝑇 1

𝑁
∑ 𝐶𝑘

𝑁
𝑘=1 . 

Pseudo-code of CUDA implementation will be considered 
next. 

 

 

Figure 6.  Acceleration of computations of CUDA parallel algorithm 
relatively serial algorithm. PDE.     

Algorithm 5. Asian call options pricing, partial differential 
equation 

Input: arrays: S (current prices S0), r (risk-free interest rates), v 
(volatilities), T (days to expiration), K (strike prices); scalars: 
nMC (amount tests in MC method), N (amount of options), Ng 
(amount of options could be processed simultaneously over the 
grid) 
Output: arrays: C 

1. nMCPerThread := nMC / blockSize and copy  into 
    c_nMCPerThread resided in the constant memory 
2. Sort arrays S, r, v, T, K using quick sort by the elements of 
    T as a sorting key 
3. Transfer the data from host memory S, r, v, T, K, A to 
    allocated regions in global memory dev_S, dev_r, dev_v,  
    dev_T, dev_K, dev_A 
4. Allocate memory for dev_C. Initialize states of array  
    dev_states of curandStateSobol32 type 
5. for jstride = 0 : N / Ng  do 
6.       for counter = 0 : nMCPerThread - 1 do 
7.             pricing_kernel <<<gridSize, blockSize>>> (jstride, 
                dev_sum, dev_cond, dev_states, dev_S, dev_r, 
                dev_v, dev_K, dev_T) 
8.             Synchronize the threads within the grid 
9.      end for  
10. end for 
11. Synchronize the threads within the grid  
12. compute_kernel <<< gridSize, blockSize>>> (dev_C, 
      dev_r, dev_T) 
13. Copy the values from dev_C to C 

We prepare to computations at steps 1 – 4. As in the previous 
case Ng and jstride are used to proceed just a part of a set of 
options. We use compute_kernel to implement step 5 of the MC 
method and pricing_kernel for steps 1 – 4 of the method, which 
is considered further.  

Algorithm 6. Kernel function: pricing_kernel 
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1. Define the positions of the current thread tid and the block  
    bid within the grid. Calculate the size of the block blockSize  
    and the position of the thread within the block idx. Set the 
    index of the option: optInd := Ng * stride + bid 
2. Select Amax, Smax, Ns, Na 
3. delta_S := Smax/Ns, delta_A := Amax / Na and evalTime := 0 
4. Allocate memory for the arrays sbuffer_c [blockSize], 
    sbuffer_S [blockSize], sbuffer_A [blockSize] in shared 
    memory 
5. Copy input data into variables resided in local memory  
    localState, rate, vol, price, day, A, sbuffer_c [idx] := price  
    and sbuffer_A [idx] := A 
6.  Select a point on the grid with coordinates  
     (sbuffer_c [idx], sbuffer_A [idx]) or closest point. 
7. while (done = false) do 
8.      Chose a point to move to 
9.      Depends on the selected pointed calculate  
            sbuffer_S[idx] := sbuffer_S [idx] + delta_S 
            sbuffer_S [idx] := sbuffer_S [idx] - delta_S  
            or sbuffer_A [idx] := sbuffer_A [idx] + delta_A 
10.      evalTime := evalTime + Q 
11.      if evalTime >= days / 252 or sbuffer_S[idx] =< 0 or 
            sbuffer_A[idx] =< 0 or sbuffer_S[idx] >= Smax or  
            sbuffer_A[idx] >= Amax do  
12.             Calculate price of option sbuffer_c[idx] as  
                  described above. 
13.             done := true; 
14.      end if 
15. end while 
16. Run the parallel reduction for sbuffer_c over the block 
17. if idx = 0 do 
18.       dev_C[optInd] := sbuffer_c[idx] / blockSize 
19. end if 

According to the description of the algorithm, the most 
requested values throughout the algorithm are coordinates of 
the point on the grid and the option price. Therefore, transfer of 
coordinate values to shared memory and subsequent access to 
the fast-accessible shared memory instead of the global memory 
is a good idea. (Steps 1 – 8). At the step 11 we mean what steps 
2 and 3 of the MC method are implemented. Step 12 illustrates 
how the point moves over the grid. If one of the conditions at 
step 14 is satisfied, then obtain option price with expression of 
4.a or boundary conditions of 4.b.  

The bottleneck of this algorithm is the choice of the 
parameters Amax, Smax, Ns, Na. We tried Amax as current 
value of A multiple 252, Smax as S + 100, Ns and Na could vary. 

Then the parallel reduction is used to obtain average price.  
Due to Figure 6, the evaluated acceleration is up to 45 times 

in comparison with the serial algorithm and does not change 
with variety of parameters. Figure 5 also shows dependence of 
elapsed time of CUDA implementation of parameters. The 
transfer and sorting times are taken into account. 

V. CONCLUSIONS 
Using CUDA allows increasing performance of computation 

even on a weak graphics card. The most important conclusion of 
this paper is what field of the application of the proposed 
approaches is not limited by the scope of the options price 
computing. Proposed approaches of computation could be also 
successfully applied, for example, in finite difference schemes 
and methods of calculation of the path integrals. 

Also worth saying what implementation could be transposed 
to newer devices with more advanced architecture. Main 
restriction is the size of shared memory. Implementation may be 
improved with newer graphic cards mainly due to bigger size of 
shared memory. 

CUDA allows easy algorithms scaling by variety of kernel 
parameters (the size of configured grid and blocks). It is clear 
what the more multiprocessors and cuda-cores are available for 
computation the more efficient implementations are. 

We recommend to use Sobol’s QRNG in order to decrease 
standard deviation and not to and avoid loss performance. 

For now, the question of the accuracy of the computation of 
each method is out of the scope. It is the direction for further 
research. 
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