
Using Virtualisation For Reproducible Research
And Code Portability

Svetlana Sveshnikova Ivan Gankevich
Dept. of Computer Modeling and Multiprocessor Systems

Saint Petersburg State University
Saint-Petersburg, Russia

Email: st012967@student.spbu.ru, i.gankevich@spbu.ru

EXTENDED ABSTRACT

Abstract—Research reproducibility is an emerging topic in
computer science. One of the problems in research reproducibility
is the absence of tools to reproduce specified operating system
with specific version of the software installed. In the proposal
reported here we investigate how a tool based on lightweight
virtualisation technologies reproduces them. The experiments
show that creating reproducible environment adds significant
overhead only on the first run of the application, and propose a
number of ways to improve the tool.

Index Terms—Linux namespaces, Linux cgroups, compiler
tools, lightweight virtualisation.

I. INTRODUCTION

Research reproducibility is an emerging topic in computer
science [1], [2]; although, repeating a research work in com-
puter science is often easier than in other sciences — one needs
only a decent computer and the source code to reproduce the
research — it may take a considerable amount of time to fully
configure the platform: setup virtual or physical cluster, install
compatible versions of operating system, software libraries and
tools and compile and run the source code of the research
work. Not only the source code, accompanying the paper, is
published rarely, but it requires certain platform configuration
to compile and run.

There are several stages on each of which (ideally) there
should be a tool that automates reproducibility:

• hardware stage (finding the required hardware),
• operating system stage (installing compatible operating

system),
• software stage (compiling and executing the programme),
• graphical stage (gathering statistics from programme runs

and plotting graphs),
• publication stage (writing and publishing the paper with

all the data, graphs and the source code included).
In this proposal we deal with operating system and software

stages — automate creation of environment to compile and
run the programme in. For this purpose we use lightweight
virtualisation technologies (Linux namespaces) on the example
of distributed batch processing programme that runs on a
cluster of nodes and processes the data in parallel. Our tool,
called Collector, creates root file system with the specified ver-
sion of Linux distribution, the compiler and all the dependent
packages. Then it compiles and runs the source code inside this

virtual environment. The resulting root file system is portable
across any platform with the same processor architecture and
compatible kernel version.

The advantages of using raw file system over opaque
operating system images are clear:

• It is portable: can be stored as is or in the archive, and
converted to/from any OS image format.

• It can be mounted over cluster network to any number of
cluster nodes, and used concurrently by several parallel
processes via Union/Overlay file system.

• It can be directly patched/upgraded by changing the
current root directory to the path of the raw file system.

The objective of the study reported here is to develop a
tool that automates creation of such portable environments
and makes building particular source code inside it repeatable
regardless of underlying operating system. This is the first
publication on this tool.

II. RELATED WORK

The topic of research reproducibility is active not only in
computer science, but also in statistics. For example, in [3]
the authors propose to use Org-mode — a plain text markup
language — to insert source code of research immediately in
the text of the paper and execute the code on every document
export to produce tables and graphs. Although, the system is
capable of running arbitrary scripts, it is impractical to include
any real C/C++/Fortran source code, as it is generally large
compared to the code that produces graphs and requires certain
libraries/compilers to build and run. So, Org-mode support for
reproducing graphs and tables is limited to relatively small pro-
grammes written in high-level languages (R/python/graphviz),
that takes input data, produced elsewhere, and generates a
graph or a table.

In [4] the authors discuss the importance of research re-
producibility in parallel computing to improve trustworthiness
of the experiments. The issues that prevent wide spread of
reproducible research practice include

• the impossibility to reproduce research if someone uses
unique hardware,

• publishing rules and agreements,
• the impossibility to obtain the required version of soft-

ware.



So, the external rules and regulations may prevent publishing
the whole paper together with the source code, but may not
prevent publishing gathered data and the source code that
produces the numbers.

Another idea is that its is not the source code that should
be included in scientific paper, but that data, programme code
and presentation of research may be stored together in a single
file. This approach was explored in [5] where the authors
suggest using Java Virtual Machine (JVM) to execute bytecode
and HDF5 file format to store all the experimental data,
source code and scripts for generating tables, plots and figures.
Potential problems consist of using another programming
languages, that are not supported by JVM (C/C++/Fortran),
and storing large datasets in HDF5 file.

III. COLLECTOR TOOL

All computer science research works can be divided into
two broad categories. On one side there are experiments with
software or algorithms. In this research the most valuable part
is the source code and configuration of execution environment,
which usually consists of some operating system, processor
architecture and software packages. On another side there
are experiments with configuration of compute nodes and
cluster network. To store and later reproduce operating system
and execution environment we propose to use Collector — a
programme that builds C/C++/Fortran source code by down-
loading and installing system packages in a separate root file
system directory without super user privileges.

The task is accomplished via instantiating new mount and
user Linux namespaces in which the original user is mapped
to the super user. After that a new process is launched having
all super user privileges inside these namespaces, and installs
packages specified in the configuration file into the specified
root file system directory. Finally, the current file system root
is moved to this directory, a directory with the source code is
mapped from the original root file system to the new one, and
the code is compiled and run inside it.

Root file system that was created during the first run
is saved, and subsequent runs of the application and code
compilation do not cause installation of system packages
(unless specified in the configuration file). On the first run
Collector downloads and installs system packages specified in
the configuration file from OS repository via package manager.
It is a simple prototype that may be improved in future. For
example, using network Linux namespace it is straightforward
to run the application over virtual network with specified
number of nodes and IP address range. Another improvement
is to use Linux control groups to limit resource usage of each
parallel process to make performance of virtual network more
predictable. In our example we use CentOS operating system
with RPM package manager, but the procedure can be adapted
for other platforms.

In the experiment we compile and run the test pro-
gramme [6] two times. During the first run Collector down-
loads and installs all the dependencies before compiling and
running, and during the second run it only checks that depen-
dencies are satisfied. After that it compiles the programme and

TABLE I
PERFORMANCE OF ROOT FILE SYSTEM INITIALISATION.

Action
Time, s

Exp. I Exp. II

Download and install dependencies 548 9
Execute example 723 723

All time 1271 732

runs tests. The experiment showed that initialising a separate
root file system takes considerable amount of time compared
to the execution time of tests, whereas subsequent runs are
faster as they use already initialised environment (Table I).
Performance-wise it would be more efficient to store read-
only base image of the operating system in cache directory
and use Union/Overlay file system to mount it under writable
directory to reduce initialisation time.

There are a number of potential problems that are related
to lightweight virtualisation technologies. First, it requires
recent version of Linux kernel (at least 3.10 fully supports
all namespaces) to use unprivileged user namespaces, and this
version is newer than the one that is widely used in HPC
clusters. For example, Scientific Linux distribution, which
is popular in GRID computing, uses kernel version 2.6.32,
which is not capable of creating user namespaces. Second,
lightweight virtualisation is available on Linux only, there is
no compatible version of the technology neither for UNIX nor
for POSIX-compliant operating systems.

IV. CONCLUSION

One of the problems in research reproducibility is the
absence of tools to reproduce specified operating system
with specific version of the software installed. Lightweight
virtualisation technologies is a solution to this problem, that
uses unprivileged Linux namespaces to create such execution
environment in a separate root file system directory and
package it together with the source code of the programme and
its binary form. The solution does not pollute host operating
system with programme dependencies and does not require
super user privileges to create the environment. The future
work is to investigate how network Linux namespace and
control groups can improve application execution inside the
environment.

REFERENCES

[1] R. J. LeVeque, “Wave propagation software, computational science, and
reproducible research,” in Proc. Int. Congr. of Mathematicians, 2006.

[2] A. P. Davison, M. Mattioni, D. Samarkanov, and B. Teleńczuk, “Sumatra:
a toolkit for reproducible research,” Implementing reproducible research,
vol. 57, 2014.

[3] E. Schulte, D. Davison, T. Dye, C. Dominik et al., “A multi-language
computing environment for literate programming and reproducible re-
search,” Journal of Statistical Software, vol. 46, no. 3, pp. 1–24, 2012.

[4] S. Hunold and J. L. Träff, “On the state and importance of repro-
ducible experimental research in parallel computing,” arXiv preprint
arXiv:1308.3648, 2013.

[5] K. Hinsen, “A data and code model for reproducible research and
executable papers,” Procedia Computer Science, vol. 4, pp. 579–588,
2011.

[6] “Spectrum processing programme,” https://bitbucket.org/igankevich/
spec-factory.


