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ABSTRACT 
In the paper different software approaches for wave surface 

generation are compared. In the paper autoregressive model 

with nonlinear inertialess transformation is described. 

General solution of the problem and particular algorithms for 

each software approach are shown. Estimation of efficiency 

of each approach is carried out. This model is often used for 

modeling of dynamic object behavior. Such modeling has 

found a wide utility in virtual testbed and in testing of marine 

onboard real-time intelligent systems. The article gives a brief 

comparison of OpenMP, OpenCL and MPI technologies, 

mentioning their advantages and disadvantages.  
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1. INTRODUCTION 
Modern transport (ship, aircraft, helicopter, etc.), complex 

dynamic systems as nuclear power plants, pipe systems for 

gas and oil transfer, etc. have reached such high level of 

complexity and functionality that mistakes of operators can 

result in fatal consequences and great damage. The more 

difficultly control object and more aggressive and 

unpredictable environment, the more serious consequences of 

adverse (critical) situations can be. Complex modeling and 

control of complex dynamic objects and multifunctional 

systems are carried out by the way of virtual testbed 

development. We can consider virtual testbed as a form of 

problem solving environment (PSE) for research engineer. 

PSE provides a complete integrated computing environment 

for composing, compiling, running, controlling and 

visualizing applications. It incorporates many features of an 

expert system and provides extensive assistance to users in 

formulating problems and integrating program codes, 

processes, data, and systems in distributed computing 

environments [11]. 

Concept of virtual testbed determines organization of 

hardware and software complex, as multi-layered system 

consisting of the following components [2]: 

• hierarchy of simulation models in considered problem 

fields; 

• hierarchy of analytical models, providing a simplified 

description of different sides of simulated events; 

• information subsystem, which includes database and 

knowledge-base of methods and models of artificial 

intelligence; 

• control system and interface, providing interaction of all 

components of the system and work with the user. 

The theory, methods and technologies of development of 

various classes of the models used at functioning of 

considered virtual testbed cover various problem areas. 

Complexity and interrelation of these areas put in the 

forefront a problem of estimation of qualities of models, 

analysis and ordering of the various classes, valid synthesis of 

new models and choice of the most preferable models for 

solution of applied tasks. 

If we consider virtual testbed for investigation of marine 

objects behavior than the main component of multi-layer 

system is the model of external excitations – wind waves, 

swell, wind, current, etc. Until recently practically the 

information which interested researchers in the field of naval 

hydrodynamics and investigation of ship behavior at sea, has 

been concentrated in concept of wave spectral density. 

Discussions, basically, occurred around the most adequate 

analytical representation of a spectrum. Such view on 

mathematical representation of environment is determined by 

old models (mainly linear) of ship behavior in random sea. At 

the same time needs of modern practice and possibilities of 

science require from the one hand and permit from the other 

hand to modify approach to wave modeling. Direct 

simulation of time and space domain wave surface 

realizations is much more universal representation of sea 

environment. Such approach is harmonically combined with 

concept of virtual testbed. Additionally sea wave surface 

generation is a complex physical process, computer modeling 

of which may result in certain sophisticated errors. In this 

case real-time visualization is preferred to standard 

mathematical methods in terms of simplicity and efficiency. 

Sea wave visualization is extensively used for model dynamic 

object behavior in irregular waves and to configure 

knowledge base for the intelligent onboard ship real-time 

systems. Sufficient generation time is required for 

visualization being possible; therefore finding new methods 

to solve this problem is an urgent task for today. 

Increasing of computer power and service oriented approach 

for utilization of computer resources permit to change the 

view to development of complex applications. The issue of 

running parallel applications in heterogeneous environment 

became more evident after the Grid technology was 

introduced. Observed is a problem-oriented environment for 

simulation of wave in virtual polygon. Large number of 

computational applications and PSE developed for traditional 

parallel systems (homogeneous supercomputers or clusters) 

required modifications in order to enable efficient execution 

on distributed and heterogeneous environment such as the 

Grid. 

Different components (services) of virtual testbed in 

frameworks of such approach have to operate in various 

conditions of computer environment. So modifications 

mentioned before have to be taken it into account. In the 

paper different implementations of autoregressive model of 

waves are considered. Efficiency and features of such 

implementations are estimated from the point of view of 

component of multi-layer application (virtual testbed). 

 

2. MODEL FOR SEA WAVES SIMULATION  
The most useful wave model for real-time simulation of sea 

surface at long time intervals is autoregressive model [1, 5, 6, 

10, 16]. This is a type of random process model which is used 
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for wave surface behavior modeling. This model considers 

wave surface as a spatio-temporal field. Every point value of 

such field is calculated as an infinite weighted sum of 

previous point values in a given sub region plus white noise 

value. Therefore the state of a wave surface at a given time 

has an autoregressive dependency on a set of previous states 

and some random variable with normal distribution [8]. This 

dependency is defined by the following equation. 
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where φ are autoregressive coefficients. They can be 

estimated from the auto covariate function (ACF) using Yule-

Walker equations. The set of such equations for three-

dimensional problem is given by the following formulas, 

where γi,j,k are discrete values of ACF. 

Aφ = b,  ai,j = γ|x(i)-x(j)|,|y(i)-y(j)|,|t(i)-t(j)|, bi = γx(i),y(i),t(i)  

x(i) = mod((i+1)/(p1p2), p1) ,   

y(i) = mod((i+1)/p3, p2) ,  

t(i) = mod(i+1, p3) . 

(2) 

The experimental investigations of sea waves [12, 16] shown, 

that the value of wave skewness is limited by 0.1-0.52, and 

values of kurtosis is limited by 0.1-0.7. Therefore the 

generated wave surface should be transformed to match this 

distribution. The transformation function z=f(y) for an 

arbitrary probability distribution F(z) defined as the solution 

of nonlinear static equation 

F(z) = Ф(y), (3) 

where Ф(y) is the one-dimensional uniform Gaussian 

probability distribution. 

However, if nonlinear transformation of process is taken 

place, the autocovariance function of the process has to be 

transformed explicitly. The transformation is done by using 

Gram-Charlier series [5, 9] and the following formula, where 

z(y) is the solution of equation (3) and Hm(y) is Hermite 

polynomial. 
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The coefficients Cm are estimated analytically. 
 

2.1. Implementation  
Implementation has been done on the base of OpenCL, MPI 

and OpenMP. However algorithm is the same for all of them. 

The first step of algorithm is estimation of auto covariate 

function (ACF). Usually such estimation is carried out with 

the help of natural data. This approach results in 

overdetermined Yule-Walker system and involves least 

squares method using. However research [8, 16] showed that 

in this case using of approximation of preliminary smoothed 

ACF is more robust approach than direct using of natural 

data. Theoretically the number of AR coefficients tends to 

infinity but it is not practically possible. Therefore the 

approximation of ACF should be chosen tending to zero so 

that φi values gradually become smaller and could be 

considered as zeroes at some point of time. Sample of such 

approximation is given below. 

γ(x, y, t) = e- α(|x|+|y|+|t|)·cos(βx)·cos(βy)·cos(βt) . (5) 

The next step is ACF transformation. It is done by choosing 

of the distribution function. One of the possible choices is 

asymmetric normal distribution denoted by the following 

formula, where T(z, α) is Owen’s T function and F(z) is 

normal distribution function (a sample of this distribution 

function is shown in fig. 1). 

Φ(z) = F(z) - 2T(z, α) . (6) 

 
Fig. 1. Sample of asymmetric normal distribution function 

Φ(x), where α=1.2, mean=0.6130, variance=0.6243, 

skewness=0.2004, kurtosis=0.1026. 

Solving equation (3) with chosen distribution function at each 

surface point is more precise but inefficient approach, 

therefore it is rational to solve equation at a certain grid 

points and to interpolate the results. The solution is 

approximated by the following polynomial. 
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The approximate parameters di are obtained by means of the 

least squares approach. In current implementation distribution 

function was approximated by the 12 order polynomial at 500 

grid points in range [-5·Var(z), 5·Var(z)]. Choosing of higher 

order of polynomial resulted in floating point number 

overflows and additional coefficients tending to zero. 

Choosing of different grid size also had minor effect on the 

approximation. In most cases three coefficients were 

sufficient for ACF transformation; interpolation increased 

relative error from 10-5 to 0.43·10-3.  

Autocovariate function can be transformed using formula (4). 

The criterion of stopping of calculation process is defined as 

the follow [5, 9]. 
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Fig. 2. Algorithm of wave surface generation 

The next step is to determine AR coefficients by solving 

Yule-Walker equations. The optimum Yule-Walker system 

size should be chosen by hand (or by any heuristic approach) 

without invoking least squares method often used in solving 

one-dimensional problem. The matrix of Yule-Walker system 

is positive definite and symmetric, therefore it is efficient to 

solve it using Cholesky decomposition. The following step in 

the algorithm is generation of white noise with normal 

distribution. It is done by parallel implementation of 

Mersenne Twister algorithm. Separate unique generator 

initialized by a standalone dcmt program [15] is used in each 
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thread. This approach reduces random number correlation 

between generators [14]. 

Knowing of AR coefficients and white noise realization are 

sufficient for wave surface generation. This process starts 

with generation of separate parts of wave surface in each 

thread. These parts have intentionally larger sizes. Each part 

begins with so-called acceleration interval. On this interval 

points are generated using partial set of AR coefficients 

resulting in inaccurate wave surface. Therefore this interval is 

cut and remaining points are merged using bilateral 

autoregressive dependency (with interval between parts 

initially filled with zeroes) [7]. This technique is sometimes 

called "sewing". It is done by the following formula. 

tyx

i j k

kzjyixkji

i j k

kzjyixkjityx

z

zz

,,,,,,

,,,,,,

εϕ

ϕ

+

+=

∑∑∑

∑∑∑

+++

−−−

 . 

(9) 

The generation of wave surface is done when mathematical 

methods were heavy used. So its validity should be 

statistically proven. It is done by comparing certain wave 

surface characteristics (ACF, variance, spectrum) and by 

comparing distributions (z, slopes, heights and periods). 

Partial results of such tests are given in the fig. 3. General 

algorithm for wave surface generation is shown in the fig. 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

3. COMPARISON OF OPENCL, OPENMP AND 

MPI IMPLEMENTATIONS  
Implementation has been made using OpenCL, OpenMP and 

MPI technologies. OpenCL (Open Computing Language) 

provides user with tools to run programs on GPUs and 

standalone programming language based on C99. OpenMP 

(Open Multi-Processing) provides user with tools to 

parallelize programs on CPUs supporting programming 

languages C/C++ and Fortran. Both technologies support data 

and task parallelism, offering shared memory for processes 

and thread synchronization tools. The significant difference 

between technologies is their hardware base (CPU and GPU 

architecture). 

The GPU design was initially aimed for maximizing 

computational throughput; therefore a general graphics card 

contains several computation units that work in parallel. 

These units are optimized for data processing, and they are 

able to run multiple threads at a time. GPU thread is a 

lightweight hardware process, it is not a subject for a process 

context switches and has inexpensive spawning time. 

Described design resulted in GPU having more threads 

running at a time in comparison with CPU. 

MPI (Message Passing Interface) provides user with tools for 

parallelizing of programs on multiple computers or 

processors. This technology also supports data and task 

parallelism but instead of shared memory it offers 

interprocess communication and synchronization routines. 

Algorithms for wave surface generation using OpenCL and 

OpenMP are identical. OpenCL algorithm having multiple 

threads generates single wave surface part. OpenMP 

algorithm has one thread for each part. MPI implementation 

is quite different. It includes explicit synchronization before 

sewing. Each process receives small chunk of preceding wave 

surface part that sufficient to merge it with the next part. As 

soon as sewing is finished all parts are sent to main process. 
 

 
Fig. 4. Wave surface representation in device memory (3d 

view).  

Programs were tested on the following hardware 

configuration: NVIDIA 8800GT graphics card with 112 

stream processors at 1.5 GHz (10752 threads approx.), 256 

Mb shared memory and 2 CPUs with 2 cores at 3 GHz (4 

threads) connected directly via 1 Gbit Ethernet cable. 

Although graphics card is superior CPU in terms of 

performance, it has not been proved by real test results due to 

differences in technologies and algorithm implementations 

used. All tests were performed with single precision operation 

type due to OpenCL implementation constraints. 

In accordance with benchmarks results of OpenCL and MPI 

programs execution times are linearly dependent on wave 

surface size, but increasing number of parts has small impact 

on performance. Such behavior has different causes. In MPI 

program the more we have wave surface parts the more 

interprocess communication is needed. As a result increased 

number of parts reduces wave generation time by half and 

doubles synchronization time, therefore total execution time 

remains roughly the same.  

OpenCL program with large number of threads produces 

large amount of write operations. It causes high load on 

memory and therefore increases execution time. This problem 

can be solved by coalescing global memory accesses [17]; 

however this solution proved to be inappropriate considering 

current algorithm. Large number of parts results in a smaller 

interval between them and therefore to inferior part sewing. 

Small number of parts results in parallel threads not being 

fully utilized and algorithm being inefficient. OpenCL 

implementation is considered to be the most complicated, 

slow and having unstable scale of execution time among 

variable input parameters. 

OpenCL and MPI implementations work faster with large 

amount of parts but it increases memory overhead for 

OpenCL and communication overhead for MPI. As opposed 

to this, the execution time of OpenMP program is linearly 

dependent on wave surface part count as well as on wave 

surface size. So we can consider OpenMP implementation as 

a good linear scaling way and the best performance in 

comparison with OpenCL and MPI implementations. 

Detailed test results are shown in table 1. 

 
 
Fig. 3. (a) wave z distribution; (b) real S1 and model S2 

spectrum comparison; (c) wave heights distribution; 

(a) (c) 

(c) 

250



OpenMP technology has certain memory issues. The first 

problem is false sharing [18]. When one thread copies region 

of shared memory to local cache and the other thread writes 

to this memory region, it causes cache invalidation, 

increasing memory access time. The second problem is 

memory allocation issue [18]. Modern operating systems use 

first touch policy to allocate data objects. Under this policy 

the thread initializing data object gets the page associated 

with that data item in the memory local to processor it is 

currently executing on. Such strategy works well for single 

threaded applications; however first touch policy is not 

appropriate for multithreaded program. It can result in slow 

down memory accesses due to processes changing computing 

units after context switches and due to thread’s irregular data 

access pattern including different memory pages. 
 

Table 1. Performance test results for OpenCL, OpenMP and 

MPI implementations (single precision).  

Wave surface parts Size Time, s 

OpenCL OpenMP MPI All OpenCL OpenMP MPI 

256 1 2 13452 0.61 0.47 0.66 

256 1 2 26905 1.23 0.94 1.38 

256 1 2 53810 2.60 1.97 2.82 

1024 1 2 107620 4.25 4.07 5.60 

1024 1 2 215240 9.41 8.32 11.22 

512 2 4 13452 0.51 0.24 0.64 

512 2 4 26905 0.99 0.47 1.32 

512 2 4 53810 2.36 1.07 2.67 

2048 2 4 107620 3.90 2.20 5.35 

2048 2 4 215240 8.08 4.42 10.94 

Mentioned issues are important for large multiprocessor 

systems with hundreds of threads running simultaneously; 

however in the current configuration they have minor impact 

on program performance. 

 

4. CONCLUSION 
Different ship infrastructure can lead to different onboard 

intelligent system or virtual testbed configurations as well as 

different parallel computing technologies have their own 

advantages and disadvantages. Therefore the final choice is 

often dependent on a problem and available resources. Here 

all technologies and their benefits will be compared. 

The use of OpenMP can ensure lower software development 

costs considering more elaborate and simple API among other 

technologies as well as good performance (according to test 

results); however multiprocessor systems tend to have higher 

market prices and low hardware scalability issues compared 

to computer clusters. 

The use of OpenCL is justified only in solving certain 

problems that map well to GPU architecture and require real-

time visualization. OpenGL and OpenCL interoperability 

reduces cost of transferring data between CPU and GPU 

memory and it is a great benefit from the visualization point 

of view (that is very important for virtual testbed 

development). However it is hard to fully utilize GPU power 

to solve wave surface generation problem; high discretion of 

wave surface often results in non stationary autoregressive 

process, therefore waves visualization can be performed in 

conjunction with any other technology. 

OpenCL and OpenMP are evolving technologies whereas 

MPI is a standard for solving large scale problems. It has 

certain debugging issues as OpenCL does; however it 

provides uniform synchronization through the interprocess 

communication and simple architecture as OpenMP does. 

All the technologies have their own integration scope and 

final decision should be made considering external factors 

and specified requirements. 
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