

Efficiency Comparison of Wave Surface Generation Using OpenCL,

OpenMP and MPI

 Alexander Degtyarev

Saint-Petersburg State University, Faculty of

Applied Mathematics and Control Processes

St.Petersburg, Russia
e-mail: deg@csa.ru

Ivan Gankevich

Saint-Petersburg State University, Faculty of

Applied Mathematics and Control Processes

St.Petersburg, Russia

e-mail: gig.spb@gmail.com

ABSTRACT
In the paper different software approaches for wave surface

generation are compared. In the paper autoregressive model

with nonlinear inertialess transformation is described.

General solution of the problem and particular algorithms for

each software approach are shown. Estimation of efficiency

of each approach is carried out. This model is often used for

modeling of dynamic object behavior. Such modeling has

found a wide utility in virtual testbed and in testing of marine

onboard real-time intelligent systems. The article gives a brief

comparison of OpenMP, OpenCL and MPI technologies,

mentioning their advantages and disadvantages.

Keywords
Autoregressive model, OpenMP, OpenCL, MPI, wave surface

generation, parallel computing, virtual testbed.

1. INTRODUCTION
Modern transport (ship, aircraft, helicopter, etc.), complex

dynamic systems as nuclear power plants, pipe systems for

gas and oil transfer, etc. have reached such high level of

complexity and functionality that mistakes of operators can

result in fatal consequences and great damage. The more

difficultly control object and more aggressive and

unpredictable environment, the more serious consequences of

adverse (critical) situations can be. Complex modeling and

control of complex dynamic objects and multifunctional

systems are carried out by the way of virtual testbed

development. We can consider virtual testbed as a form of

problem solving environment (PSE) for research engineer.

PSE provides a complete integrated computing environment

for composing, compiling, running, controlling and

visualizing applications. It incorporates many features of an

expert system and provides extensive assistance to users in

formulating problems and integrating program codes,

processes, data, and systems in distributed computing

environments [11].

Concept of virtual testbed determines organization of

hardware and software complex, as multi-layered system

consisting of the following components [2]:

• hierarchy of simulation models in considered problem

fields;

• hierarchy of analytical models, providing a simplified

description of different sides of simulated events;

• information subsystem, which includes database and

knowledge-base of methods and models of artificial

intelligence;

• control system and interface, providing interaction of all

components of the system and work with the user.

The theory, methods and technologies of development of

various classes of the models used at functioning of

considered virtual testbed cover various problem areas.

Complexity and interrelation of these areas put in the

forefront a problem of estimation of qualities of models,

analysis and ordering of the various classes, valid synthesis of

new models and choice of the most preferable models for

solution of applied tasks.

If we consider virtual testbed for investigation of marine

objects behavior than the main component of multi-layer

system is the model of external excitations – wind waves,

swell, wind, current, etc. Until recently practically the

information which interested researchers in the field of naval

hydrodynamics and investigation of ship behavior at sea, has

been concentrated in concept of wave spectral density.

Discussions, basically, occurred around the most adequate

analytical representation of a spectrum. Such view on

mathematical representation of environment is determined by

old models (mainly linear) of ship behavior in random sea. At

the same time needs of modern practice and possibilities of

science require from the one hand and permit from the other

hand to modify approach to wave modeling. Direct

simulation of time and space domain wave surface

realizations is much more universal representation of sea

environment. Such approach is harmonically combined with

concept of virtual testbed. Additionally sea wave surface

generation is a complex physical process, computer modeling

of which may result in certain sophisticated errors. In this

case real-time visualization is preferred to standard

mathematical methods in terms of simplicity and efficiency.

Sea wave visualization is extensively used for model dynamic

object behavior in irregular waves and to configure

knowledge base for the intelligent onboard ship real-time

systems. Sufficient generation time is required for

visualization being possible; therefore finding new methods

to solve this problem is an urgent task for today.

Increasing of computer power and service oriented approach

for utilization of computer resources permit to change the

view to development of complex applications. The issue of

running parallel applications in heterogeneous environment

became more evident after the Grid technology was

introduced. Observed is a problem-oriented environment for

simulation of wave in virtual polygon. Large number of

computational applications and PSE developed for traditional

parallel systems (homogeneous supercomputers or clusters)

required modifications in order to enable efficient execution

on distributed and heterogeneous environment such as the

Grid.

Different components (services) of virtual testbed in

frameworks of such approach have to operate in various

conditions of computer environment. So modifications

mentioned before have to be taken it into account. In the

paper different implementations of autoregressive model of

waves are considered. Efficiency and features of such

implementations are estimated from the point of view of

component of multi-layer application (virtual testbed).

2. MODEL FOR SEA WAVES SIMULATION
The most useful wave model for real-time simulation of sea

surface at long time intervals is autoregressive model [1, 5, 6,

10, 16]. This is a type of random process model which is used

248

CSIT Conference 2011, Yerevan, Armenia, September 26-30

248

for wave surface behavior modeling. This model considers

wave surface as a spatio-temporal field. Every point value of

such field is calculated as an infinite weighted sum of

previous point values in a given sub region plus white noise

value. Therefore the state of a wave surface at a given time

has an autoregressive dependency on a set of previous states

and some random variable with normal distribution [8]. This

dependency is defined by the following equation.

tyx

p

i

p

j

p

k

ktjyixkjityx zz ,,

0 0 0

,,,,,,

1 2 3

εϕ +⋅=∑∑∑
= = =

−−− ,
(1)

where φ are autoregressive coefficients. They can be

estimated from the auto covariate function (ACF) using Yule-

Walker equations. The set of such equations for three-

dimensional problem is given by the following formulas,

where γi,j,k are discrete values of ACF.

Aφ = b, ai,j = γ|x(i)-x(j)|,|y(i)-y(j)|,|t(i)-t(j)|, bi = γx(i),y(i),t(i)

x(i) = mod((i+1)/(p1p2), p1) ,

y(i) = mod((i+1)/p3, p2) ,

t(i) = mod(i+1, p3) .

(2)

The experimental investigations of sea waves [12, 16] shown,

that the value of wave skewness is limited by 0.1-0.52, and

values of kurtosis is limited by 0.1-0.7. Therefore the

generated wave surface should be transformed to match this

distribution. The transformation function z=f(y) for an

arbitrary probability distribution F(z) defined as the solution

of nonlinear static equation

F(z) = Ф(y), (3)

where Ф(y) is the one-dimensional uniform Gaussian

probability distribution.

However, if nonlinear transformation of process is taken

place, the autocovariance function of the process has to be

transformed explicitly. The transformation is done by using

Gram-Charlier series [5, 9] and the following formula, where

z(y) is the solution of equation (3) and Hm(y) is Hermite

polynomial.

() ()

∫

∑
∞

∞−

∞

=

−=

=

dy
y

yHyfC

m

tyxK
CtyxK

mm

m

y

mz

)
2

exp()()(
2

1

,
!

,,
,,

2

0

2

π

 .

(4)

The coefficients Cm are estimated analytically.

2.1. Implementation
Implementation has been done on the base of OpenCL, MPI

and OpenMP. However algorithm is the same for all of them.

The first step of algorithm is estimation of auto covariate

function (ACF). Usually such estimation is carried out with

the help of natural data. This approach results in

overdetermined Yule-Walker system and involves least

squares method using. However research [8, 16] showed that

in this case using of approximation of preliminary smoothed

ACF is more robust approach than direct using of natural

data. Theoretically the number of AR coefficients tends to

infinity but it is not practically possible. Therefore the

approximation of ACF should be chosen tending to zero so

that φi values gradually become smaller and could be

considered as zeroes at some point of time. Sample of such

approximation is given below.

γ(x, y, t) = e- α(|x|+|y|+|t|)·cos(βx)·cos(βy)·cos(βt) . (5)

The next step is ACF transformation. It is done by choosing

of the distribution function. One of the possible choices is

asymmetric normal distribution denoted by the following

formula, where T(z, α) is Owen’s T function and F(z) is

normal distribution function (a sample of this distribution

function is shown in fig. 1).

Φ(z) = F(z) - 2T(z, α) . (6)

Fig. 1. Sample of asymmetric normal distribution function

Φ(x), where α=1.2, mean=0.6130, variance=0.6243,

skewness=0.2004, kurtosis=0.1026.

Solving equation (3) with chosen distribution function at each

surface point is more precise but inefficient approach,

therefore it is rational to solve equation at a certain grid

points and to interpolate the results. The solution is

approximated by the following polynomial.

∑
=

≅=
N

i

i

i ydyfz
0

)(.
(7)

The approximate parameters di are obtained by means of the

least squares approach. In current implementation distribution

function was approximated by the 12 order polynomial at 500

grid points in range [-5·Var(z), 5·Var(z)]. Choosing of higher

order of polynomial resulted in floating point number

overflows and additional coefficients tending to zero.

Choosing of different grid size also had minor effect on the

approximation. In most cases three coefficients were

sufficient for ACF transformation; interpolation increased

relative error from 10-5 to 0.43·10-3.

Autocovariate function can be transformed using formula (4).

The criterion of stopping of calculation process is defined as

the follow [5, 9].

∑=
!

2
2

m

Cm
zσ .

(8)

Fig. 2. Algorithm of wave surface generation

The next step is to determine AR coefficients by solving

Yule-Walker equations. The optimum Yule-Walker system

size should be chosen by hand (or by any heuristic approach)

without invoking least squares method often used in solving

one-dimensional problem. The matrix of Yule-Walker system

is positive definite and symmetric, therefore it is efficient to

solve it using Cholesky decomposition. The following step in

the algorithm is generation of white noise with normal

distribution. It is done by parallel implementation of

Mersenne Twister algorithm. Separate unique generator

initialized by a standalone dcmt program [15] is used in each

249

thread. This approach reduces random number correlation

between generators [14].

Knowing of AR coefficients and white noise realization are

sufficient for wave surface generation. This process starts

with generation of separate parts of wave surface in each

thread. These parts have intentionally larger sizes. Each part

begins with so-called acceleration interval. On this interval

points are generated using partial set of AR coefficients

resulting in inaccurate wave surface. Therefore this interval is

cut and remaining points are merged using bilateral

autoregressive dependency (with interval between parts

initially filled with zeroes) [7]. This technique is sometimes

called "sewing". It is done by the following formula.

tyx

i j k

kzjyixkji

i j k

kzjyixkjityx

z

zz

,,,,,,

,,,,,,

εϕ

ϕ

+

+=

∑∑∑

∑∑∑

+++

−−−

 .

(9)

The generation of wave surface is done when mathematical

methods were heavy used. So its validity should be

statistically proven. It is done by comparing certain wave

surface characteristics (ACF, variance, spectrum) and by

comparing distributions (z, slopes, heights and periods).

Partial results of such tests are given in the fig. 3. General

algorithm for wave surface generation is shown in the fig. 2.

3. COMPARISON OF OPENCL, OPENMP AND

MPI IMPLEMENTATIONS
Implementation has been made using OpenCL, OpenMP and

MPI technologies. OpenCL (Open Computing Language)

provides user with tools to run programs on GPUs and

standalone programming language based on C99. OpenMP

(Open Multi-Processing) provides user with tools to

parallelize programs on CPUs supporting programming

languages C/C++ and Fortran. Both technologies support data

and task parallelism, offering shared memory for processes

and thread synchronization tools. The significant difference

between technologies is their hardware base (CPU and GPU

architecture).

The GPU design was initially aimed for maximizing

computational throughput; therefore a general graphics card

contains several computation units that work in parallel.

These units are optimized for data processing, and they are

able to run multiple threads at a time. GPU thread is a

lightweight hardware process, it is not a subject for a process

context switches and has inexpensive spawning time.

Described design resulted in GPU having more threads

running at a time in comparison with CPU.

MPI (Message Passing Interface) provides user with tools for

parallelizing of programs on multiple computers or

processors. This technology also supports data and task

parallelism but instead of shared memory it offers

interprocess communication and synchronization routines.

Algorithms for wave surface generation using OpenCL and

OpenMP are identical. OpenCL algorithm having multiple

threads generates single wave surface part. OpenMP

algorithm has one thread for each part. MPI implementation

is quite different. It includes explicit synchronization before

sewing. Each process receives small chunk of preceding wave

surface part that sufficient to merge it with the next part. As

soon as sewing is finished all parts are sent to main process.

Fig. 4. Wave surface representation in device memory (3d

view).

Programs were tested on the following hardware

configuration: NVIDIA 8800GT graphics card with 112

stream processors at 1.5 GHz (10752 threads approx.), 256

Mb shared memory and 2 CPUs with 2 cores at 3 GHz (4

threads) connected directly via 1 Gbit Ethernet cable.

Although graphics card is superior CPU in terms of

performance, it has not been proved by real test results due to

differences in technologies and algorithm implementations

used. All tests were performed with single precision operation

type due to OpenCL implementation constraints.

In accordance with benchmarks results of OpenCL and MPI

programs execution times are linearly dependent on wave

surface size, but increasing number of parts has small impact

on performance. Such behavior has different causes. In MPI

program the more we have wave surface parts the more

interprocess communication is needed. As a result increased

number of parts reduces wave generation time by half and

doubles synchronization time, therefore total execution time

remains roughly the same.

OpenCL program with large number of threads produces

large amount of write operations. It causes high load on

memory and therefore increases execution time. This problem

can be solved by coalescing global memory accesses [17];

however this solution proved to be inappropriate considering

current algorithm. Large number of parts results in a smaller

interval between them and therefore to inferior part sewing.

Small number of parts results in parallel threads not being

fully utilized and algorithm being inefficient. OpenCL

implementation is considered to be the most complicated,

slow and having unstable scale of execution time among

variable input parameters.

OpenCL and MPI implementations work faster with large

amount of parts but it increases memory overhead for

OpenCL and communication overhead for MPI. As opposed

to this, the execution time of OpenMP program is linearly

dependent on wave surface part count as well as on wave

surface size. So we can consider OpenMP implementation as

a good linear scaling way and the best performance in

comparison with OpenCL and MPI implementations.

Detailed test results are shown in table 1.

Fig. 3. (a) wave z distribution; (b) real S1 and model S2

spectrum comparison; (c) wave heights distribution;

(a) (c)

(c)

250

OpenMP technology has certain memory issues. The first

problem is false sharing [18]. When one thread copies region

of shared memory to local cache and the other thread writes

to this memory region, it causes cache invalidation,

increasing memory access time. The second problem is

memory allocation issue [18]. Modern operating systems use

first touch policy to allocate data objects. Under this policy

the thread initializing data object gets the page associated

with that data item in the memory local to processor it is

currently executing on. Such strategy works well for single

threaded applications; however first touch policy is not

appropriate for multithreaded program. It can result in slow

down memory accesses due to processes changing computing

units after context switches and due to thread’s irregular data

access pattern including different memory pages.

Table 1. Performance test results for OpenCL, OpenMP and

MPI implementations (single precision).

Wave surface parts Size Time, s

OpenCL OpenMP MPI All OpenCL OpenMP MPI

256 1 2 13452 0.61 0.47 0.66

256 1 2 26905 1.23 0.94 1.38

256 1 2 53810 2.60 1.97 2.82

1024 1 2 107620 4.25 4.07 5.60

1024 1 2 215240 9.41 8.32 11.22

512 2 4 13452 0.51 0.24 0.64

512 2 4 26905 0.99 0.47 1.32

512 2 4 53810 2.36 1.07 2.67

2048 2 4 107620 3.90 2.20 5.35

2048 2 4 215240 8.08 4.42 10.94

Mentioned issues are important for large multiprocessor

systems with hundreds of threads running simultaneously;

however in the current configuration they have minor impact

on program performance.

4. CONCLUSION
Different ship infrastructure can lead to different onboard

intelligent system or virtual testbed configurations as well as

different parallel computing technologies have their own

advantages and disadvantages. Therefore the final choice is

often dependent on a problem and available resources. Here

all technologies and their benefits will be compared.

The use of OpenMP can ensure lower software development

costs considering more elaborate and simple API among other

technologies as well as good performance (according to test

results); however multiprocessor systems tend to have higher

market prices and low hardware scalability issues compared

to computer clusters.

The use of OpenCL is justified only in solving certain

problems that map well to GPU architecture and require real-

time visualization. OpenGL and OpenCL interoperability

reduces cost of transferring data between CPU and GPU

memory and it is a great benefit from the visualization point

of view (that is very important for virtual testbed

development). However it is hard to fully utilize GPU power

to solve wave surface generation problem; high discretion of

wave surface often results in non stationary autoregressive

process, therefore waves visualization can be performed in

conjunction with any other technology.

OpenCL and OpenMP are evolving technologies whereas

MPI is a standard for solving large scale problems. It has

certain debugging issues as OpenCL does; however it

provides uniform synchronization through the interprocess

communication and simple architecture as OpenMP does.

All the technologies have their own integration scope and

final decision should be made considering external factors

and specified requirements.

5. ACKNOWLEDGEMENT
Computations were partly carried out on cluster HPC-

0011654-001 of Saint-Petersburg State University, Faculty of

Applied Mathematics and Control Processes.

REFERENCES
[1] Belenky V.L.&Sevastianov N.B.: Stability and Safety of

Ships. Risk of Capsizing. SNAME, Jersey City (2007)

[2] Bogdanov A., Degtyarev A., Nechaev Yu.: Problems of

development of virtual testbed for complex dynamic

processes modeling. In: Intern. Conf. on Supercomputer

Systems and its Applications (SSA’2004), Minsk, pp.31-

-37. (2004) (in Russian)

[3] Bogdanov A., Degtyarev A., Nechaev Yu.: Parallel

algorithms for virtual testbed. In: 5th Intern. Conf. on

Computer Science and Information Technologies,

pp.393-398. NAS RA, Yerevan (2005)

[4] Bogdanov A., Degtyarev A., Soe Moe Lwin, Thurein

Kyaw Lwin: Problems of Development of Complex

Multi-layered Applications in Distributed Environment.

In: 4th Intern. Conf. Distributed Computing and Grid-

Technologies in Science and Education, pp.51-56. JINR,

Dubna (2010)

[5] Boukhanovsky A., Degtyarev A.: Probabilistic

Modelling of Stormy Sea Fields. In: Proc. of Intern.

Conf. Navy and Shipbuilding Nowadays, A2-29, 10p.,

St.Petersburg (1996) (in Russian)

[6] Boukhanovsky A., Rozhkov V., Degtyarev A.:

Peculiarities of Computer Simulation and Statistical

Representation of Time-Spatial Metocean Fields. In:

Alexandrov V.N. et al. (eds.) Computational Science –

ICCS 2001. LNCS, vol.2073, part I, pp.463--472.

Springer, Heidelberg (2001)

[7] Boukhanovky A. V., Ivanov S. V.: Parallel processing of

data in information control systems. In: National

Conference Control and information technology UIT-

2003, v.2, pp. 64-68. Saint-Petersburg (2003) (in

Russian)

[8] Box G., Jenkins G.: Time series analysis: Forecasting

and control, Holden-Day, San Francisco (1970)

[9] Degtyarev A., Boukhanovsky A.: Peculiarities of Motion

of Ship with Low Buoyancy on Asymmetrical Random

Waves. In: Renilson M. (ed.) 7th Intern. Conf. on

Stability of Ships and Ocean Vehicles. vol.B, pp.665—

679. Launceston, Tasmania, Australia (2000)

[10] Degtyarev A., Mareev V.: Climatic Spectra and Long-

Term Risk Assessment. In: 11th Intern. Ship Stability

Workshop, pp.108-114. Wageningen, The Netherlands

(2010)

[11] Gallopoulos E., Houstis E., and Rice J.R.: Computer as

thinker doer: Problem-solving environments for

computational science. IEEE Computational Science and

Engineering, 2:13--23 (1994)

[12] Huang N.E., Long S.R., Chi-Chao Tung e.a.: A non-

linear statistical model for surface elevation of nonlinear

random wave fields. J.Geophys. Res., 88, No.12 (1983).

[13] Korkhov V.V.: Hierarchical Resource Management in

Grid Computing, PhD thesis, Universiteit van

Amsterdam, 130 p. Publ: Ipskamp drukkers B.V.,

Enschede, the Netherlands (2009)

[14] Makoto Matsumoto, Takuji Nishimura: Dynamic

Creation of Pseudorandom Generators

[15] Podlozhnyuk V. Parallel Mersenne Twister (2007)

[16] Rozhkov V.A., Trapeznikov U.A.: Probabilistic models

of ocean processes. Gidrometeoizdat, Leningrad (1990)

(in Russian)

[17] OpenCL Programming Guide for the CUDA

Architecture (2010)

[18] Ruud van der Pas: OpenMP and performance. In:

International Workshop on OpenMP, Dresden (2009)

251

