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Optimizing compilers are essential for building any scientific application, however they are not
general purpose tools. Although, many compilers offer similar functionality, different optimization
strategies as well  as code structure can lead to different  performance results [1].  Additionally,
modern scientific applications often solve large-scale problems concurrently on a set of processors
thus demanding not only serial but parallel code optimizations. So, choosing the right compiler for
a particular problem is a topical question of today.

In the paper a variety of commercial and open source optimizing compilers are compared in
terms of their functionality. Then their relative performance is measured benchmarking different
sets of algorithms and scientific applications classified by their problem domains. The final results
are presented as a cumulative compiler rating scored in a particular problem domain. Based on this
rating conclusions are made.

1 Introduction

History of optimizing compilers implementing parallelization can be divided into three major
milestones  showing  emergence  of  different  parallel  technologies.  The  first  standardized  parallel
technology  introduced  in  1994  was  MPI  (Message  Passing  Interface)  exposing  coarse-grained
parallelism of a homogeneous cluster. The second one standardized in 1995 was Pthreads (POSIX
Threads)  exposing  fine-grained  parallelism  of  a  shared  memory  multi-processor  or  multi-core
homogeneous system. The most  recent  standard released in 2008 was OpenCL (Open Computing
Language) that can be used to exploit  parallelism of a heterogeneous hybrid system consisting of
multiple CPUs and GPUs. These standards are bundled into compilers either as libraries, as a set of
directives or as means of automatic parallelization.

Analysis of  compiler  output  was traditionally performed using sophisticated instrumenting
tools, however better understanding of compiler's work can be obtained using optimization reporting
options.  These  options  make  compiler  produce  valuable  information  on  succeeded  and  failed
optimizations  showing  corresponding  lines  of  code.  Optimization  reports  work  in  harmony  with
conventional  instrumentation  tools  (e.g.  Valgrind,  Oprofile)  providing  justification  of  compiler
decisions and optimization hints and are especially useful when translating parallel code.

Compilers have different level of support for introduced parallel technologies and current top
level of each technology can be outlined as follows (Figure 1): 

1. MPI library support,
2. Pthreads auto-parallelization support,
3. directive-based GPU parallelization support.

Library-level support for open standards (unlike the proprietary CUDA) is the default level for
any compiler and at this level there is not much compiler can optimize. The efficiency of low-level
system parallel library is dependent on its implementation and not the compiler used to link it to a
program, not to mention that MPI library is distributed also by “non-compiler” vendors (Platform
MPI, OpenMPI). Therefore, it leaves discussion of library-level support for MPI out of topic.
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Fig. 1: Different levels of  support for parallel standards (both open and proprietary). 
The numbers show amount of compilers supporting technology at a specified level.

Directive-based parallelization and auto-parallelization support are the levels where compiler
has the most control  over parallelization process and they are the most useful  levels for compiler
benchmarking purposes. Directive-based approach may include optimizations involving reduction of
redundant  data  movement,  elimination  of  unneeded  synchronization  points  and  others.  Auto-
parallelization  level  adds  an  heuristic  algorithm  to  determine  the  most  suitable  program  part  to
perform  parallelization.  All  in  all,  benchmarking  directive-based  and  automatic  parallelization  of
compilers may give insight into their overall efficiency.

To summarize, from the parallel applications developer point of view the most useful compiler
facilities  aiding  in  parallelization  process  are  support  for  compiler-based  parallelization  and
optimization reporting. In the first case, parallelization reveals compiler's ability to optimize program
in multi-threaded environment and for benchmarking purposes both CPU and GPU parallelization
should be considered (Section 2 and 3). Finally, optimization reports are useful to reveal compiler's
decisions in problematic lines of a source code (Section 4). So, compiler's ability to parallelize on par
with optimization reports can enhance program performance.

2 Compiler-based parallelization efficiency

Compiler-based  parallelization  is  the  simplest  approach  to  optimize  and  boost  resource-
intensive  programs,  and  other  than  that,  it  is  also  a  good  way  to  show efficiency  of  compiler's
optimizations  with  a  view  to  parallel  code.  One  of  the  most  useful  optimizations  for  scientific
applications are those involving loops such as loop tiling, loop unrolling and loop interchange, as they
maximize cache usage when processing large arrays of data [1]. They often work in harmony with
other kinds of optimizations such as vectorization and invariant code motion that further improve
resulting program performance. Thus, auto-parallelization can reveal the level of compiler's “skills”
with a view to these optimizations.

Benchmark was carried out on the basis of two BLAS (Basic Linear Algebra Subprograms)
library implementations and in a similar  manner both for CPU and GPU parallelization. The first
implementation  is  non-optimized  reference  BLAS implementation  [2]  compiled  with  a  maximum
optimization level and auto-parallelization options. The second one is hand-tuned GotoBLAS library
[3,4] compiled with self-chosen set of options. In case of GPU OpenACC [4] directives were added
before each outermost for loop inside BLAS routines so that it can be parallelized by the compiler. So,
each compiler built auto-parallelized and hand-tuned versions of the library and PGI also built GPU
version of the library.

BLAS library was chosen because it is de facto standard in scientific software development
and it  is  also contains  the simplest  algorithms to parallelize.  Algorithms consist  of  vector-vector,
vector-matrix and matrix-matrix operations that correspond to the Level 1, 2 and 3 of library routines
respectively. Each algorithm includes no more than a triple of nested loops assembled exclusively for
different argument variations (in case of Level 3 – matrix transpositions) [2]. The two inner loops can
be  used  to  expose  both  coarse-grained  parallelism  of  multiple  processor  cores  and  fine-grained

22



parallelism of vector registers. So, the choice of BLAS library was based on a desire to test compilers
on the algorithms that are easy to parallelize.

Benchmarking strategy consisted of running a subset of Level 3 routines with a variable set of
actual  arguments'  values  and  using  different  number  of  threads.  Arguments'  variations  included
different matrix sizes, transposed/non-transposed cases, upper/lower triangular matrices and left/right
sided equations. Thread number varied from 2 to 12 threads that correspond to the total of 12 machine
cores.  Benchmark  results  were  summarized  in  one table  containing  approximately  2500 rows for
subsequent analysis. 

Average performance of  auto-parallelized BLAS code is  lesser  than of  hand-tuned BLAS
library  (Table  2),  and  further  investigation  shows  significant  variations  in  efficiency when  using
transposed and non-transposed matrices (Table 1). In case of SGEMM the source code for SGEMM(AT,
B) and SGEMM(AT, BT) differs only in one index (Figure 2), and their relative performance differs by
an order of magnitude. Naturally, this index prevents loop vectorization and leads to ineffective cache
utilization due to non-unit stride memory access pattern. As matrix operations such as SGEMM are not
arithmetically  intensive  involving  no  more  than  floating  point  additions  and multiplications,  it  is
essential  to  optimize  CPU  cache  usage  and  GPU  loads/stores  coalescing  to  achieve  scalable
performance. However, it is hard for compilers to do so and matrix transpositions lead to performance
degradation.

SGEMM(AT, B) SGEMM(AT, BT)

DO J = 1,N                       
  DO I = 1,M 
    TEMP = ZERO
    DO L = 1,K 
      TEMP = TEMP + A(L,I)*B(L,J)
    CONTINUE
    IF (BETA.EQ.ZERO) THEN
      C(I,J) = ALPHA*TEMP
    ELSE
      C(I,J) = ALPHA*TEMP + 
BETA*C(I,J)
    END IF
  CONTINUE
CONTINUE

DO J = 1,N
  DO I = 1,M
    TEMP = ZERO
    DO L = 1,K
      TEMP = TEMP + A(L,I)*B(J,L)
    CONTINUE    
    IF (BETA.EQ.ZERO) THEN
      C(I,J) = ALPHA*TEMP
    ELSE
      C(I,J) = ALPHA*TEMP + 
BETA*C(I,J) 
    END IF    
  CONTINUE
CONTINUE

Fig. 2: Source code for SGEMM(AT, B) and SGEMM(AT, BT) differs only in one index and
performance differs by an order of magnitude (see Table 1).

GCC  inferior  performance  compared  to  other  compilers  seems  to  be  attributed  to  the
restriction of the compiler to parallelize only innermost loops [5]. Since benchmarked Level 3 routines
contain loops nested up to the third level it is inefficient to parallelize only innermost loop as it may
involve synchronization overheads and also as it constitutes only a part of a whole problem. As GCC
does not produce any optimization report during compilation there is no easy way to give a reliable
explanation of low performance.

Performance, Mflops PGI SGEMM cache statistics ×109

op(A) op(B) Intel PGI GCC PGI CUDA Reads Writes Misses Instructions

AT B 19108 10193 1683 1326 137.4 0.016 0.008 412

A BT 17935 9738 2982 1341 137.5 68 0.039 481

A B 16824 9453 3110 2335 137.5 68 0.008 481

AT BT 3424 946 199 2407 137.4 0.016 0.104 549
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Table 1. The effect of matrix transposition on the performance of auto-parallelized BLAS
library.

GPU  parallelization  which  was  carried  out  on  the  basis  of  directive-based  PGI  CUDA
compiler shows inferior performance compared to other compilers,  however, matrix transpositions
have an opposite effect on the efficiency (Table 1). The effect. which consists of GPU code having the
best performance in cases where CPU code having the worst, is attributed to CUDA storing matrices
in a row-major order in contrast  to Fortran storing them in a column-major order.  Differences of
matrix storage scheme affects memory access pattern which in turn affects CPU cache utilization and
GPU memory loads/stores coalescing and finally defines efficiency of arithmetically non-intensive
code.  Although,  GPU is perfectly suitable for matrix operations it  is  inherently parallel  device in
contrast  to  CPU and the best  performance  is  generally  achieved by using specific  algorithm and
implementation. So, to show comparable performance GPU compiler should rewrite a whole routine
and not just parallelize existing CPU code. All in all, the best results are achieved when parallelizing
code on CPU.

Routine
Hand-tuned

(CPU)
Parallelized 

(CPU)
Parallelized

(GPU)

Intel PGI GCC Intel PGI GCC PGI

SGEMM 111974 130197 57816 16173 7333 1824 1939

SSYMM 108611 130466 60525 9089 12123 2390 1632

SSYR2K 103813 112828 60230 18157 13728 3136 1917

SSYRK 95721 106000 43239 14562 10027 1811 1218

STRMM 99073 115354 43204 14423 7148 1990 2102

STRSM 97371 115009 41857 11381 6295 1745 1998

Table 2: Compiler parallelization efficiency of Intel, PGI and GCC compilers in Mflops.
Target platform: HP SL390s G7, 2x Intel X5650 2.67 Ghz (12 cores total), 96 Gb RAM, 3x NVIDIA

Tesla M2050.

To summarize, benchmarks show that average performance of hand-tuned optimized BLAS
library  is  an  order  of  magnitude  higher  than  of  automatically  parallelized  library.  The  largest
performance variations appear when performing operations on transposed matrices that affect efficient
CPU cache usage and GPU memory operations coalescing. Finally, as GPU and CPU vastly differ in
their architectures and programming style, the best GPU performance is achieved when implementing
algorithm from a scratch and not adapting CPU source code. All in all, compiler auto-parallelization
facilities can be seen as a means of making the first parallel program prototype which is incrementally
optimized by hand to reach its best performance.

3 Compiler-based parallelization overhead

Overheads of compiler-based parallelization are defined by a corresponding runtime library
implementation and are imposed by usage of directives. These include thread scheduling algorithms
overhead,  parallel  region  entering  overhead and synchronization  constructs  overhead.  Analysis  of
those  overheads  can  be  performed  using  micro  benchmarks  specifically  designed  to  measure
efficiency of directives.

Benchmark, which was carried out via EPCC benchmark suite [6] developed to analyze multi-
processor machine efficiency, showed that it can also be used to compare compiler's OpenMP runtime
library performance. In the original paper this suite is used to show variations in directive overheads
running benchmarks on different hardware platforms, however, if the source code is translated by
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different  compilers  and  run  on  a  single  machine  then  it  shows  representable  performance  of  a
particular  OpenMP runtime library.  So,  EPCC benchmark suite was used to measure overhead of
OpenMP directives using a set of supporting compilers.

Results of the benchmarks revealed most directives having similar overheads in case of PGI
and Intel compilers and larger overheads in case of GCC, however, there are also some directives with
different  overhead pattern.  These are  omp reduction and omp schedule(dynamic)  showing inferior
performance of PGI and  omp schedule(guided)  showing inferior performance of both PGI and Intel
compilers (Figure 4). In addition, these directives also account for no more than 5% of a total count of
omp  for directives  used  in  examined  scientific  applications  (Figure  5).  All  in  all,  commercial
compilers  have  more  efficient  OpenMP runtime  library  implementations  than  open  source  GCC
compiler does.
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Fig. 4: Overhead of omp schedule(guided) directive
showing inferior performance of commercial PGI

and Intel compilers compared to open source GCC.
Target platform: HP Proliant DL980, 8x Intel

X7560 2.2 Ghz (64 cores), 512 Gb RAM.

Fig. 5: Distribution of scheduling
and reduction directives among all

omp for directives in scientific
software packages WRF (Weather

Research Forecasting) and
WaveWatch3.

4 Optimization reports

Optimization report is a special type of compiler's output telling developer about compiler's
decisions in optimization process. Although not standardized, this output often includes decisions on
loop vectorization, loop tiling, data distribution during loop parallelization and also decisions on an
alternative loop code generation. The information is presented in a form of hints about why particular
optimization technique was or was not employed, thus providing developer with a way of optimizing a
source code for a given compiler.

Optimization  hints  may  be  useful,  however,  it  is  hard  to  measure  their  impact  on  an
application  performance.  On  one  hand,  they  provide  user  with  a  knowledge  of  compiler's  inner
workings  relieving  him  from  tedious  machine  code  analysis.  On  the  other  hand,  following
optimization hints of one compiler not always results in an optimal code for another compiler. So, this
limits usefulness of optimization reports only to the most simple cases of inefficient code structure
considering target's machine architecture.

 Conclusion

In conclusion, practical efficiency of optimizing compilers is dependent on many factors. Intel
compiler lets developer achieve easy parallelization of a program prototype, but reduced efficiency of
a  hand-tuned  source  code  version.  In  contrast  to  this,  PGI  compiler  offers  quite  an  opposite:  a
prototype is slow but a final version is highly optimized. In either case, usage of non-commercial GCC
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compiler degrades performance of both a prototype and a final application. From a different point of
view, one can use the most efficient compiler on a corresponding development stage and also for a
particular target platform. All in all,  final program performance is dependent on many factors and
compiler's impact shall not be considered in isolation.
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