
PRACTICAL EFFICIENCY OF OPTIMIZING COMPILERS
IN PARALLEL SCIENTIFIC APPLICATIONS

 Bogdanov A.V.1, Gankevich I.G.2

1Saint-Petersburg State University, Russia
bogdanov@csa.ru

2Saint-Petersburg State University, Russia
gig.spb@gmail.com

Optimizing compilers are essential for building any scientific application, however they are not
general purpose tools. Although, many compilers offer similar functionality, different optimization
strategies as well as code structure can lead to different performance results [1]. Additionally,
modern scientific applications often solve large-scale problems concurrently on a set of processors
thus demanding not only serial but parallel code optimizations. So, choosing the right compiler for
a particular problem is a topical question of today.

In the paper a variety of commercial and open source optimizing compilers are compared in
terms of their functionality. Then their relative performance is measured benchmarking different
sets of algorithms and scientific applications classified by their problem domains. The final results
are presented as a cumulative compiler rating scored in a particular problem domain. Based on this
rating conclusions are made.

1 Introduction

History of optimizing compilers implementing parallelization can be divided into three major
milestones showing emergence of different parallel technologies. The first standardized parallel
technology introduced in 1994 was MPI (Message Passing Interface) exposing coarse-grained
parallelism of a homogeneous cluster. The second one standardized in 1995 was Pthreads (POSIX
Threads) exposing fine-grained parallelism of a shared memory multi-processor or multi-core
homogeneous system. The most recent standard released in 2008 was OpenCL (Open Computing
Language) that can be used to exploit parallelism of a heterogeneous hybrid system consisting of
multiple CPUs and GPUs. These standards are bundled into compilers either as libraries, as a set of
directives or as means of automatic parallelization.

Analysis of compiler output was traditionally performed using sophisticated instrumenting
tools, however better understanding of compiler's work can be obtained using optimization reporting
options. These options make compiler produce valuable information on succeeded and failed
optimizations showing corresponding lines of code. Optimization reports work in harmony with
conventional instrumentation tools (e.g. Valgrind, Oprofile) providing justification of compiler
decisions and optimization hints and are especially useful when translating parallel code.

Compilers have different level of support for introduced parallel technologies and current top
level of each technology can be outlined as follows (Figure 1):

1. MPI library support,
2. Pthreads auto-parallelization support,
3. directive-based GPU parallelization support.

Library-level support for open standards (unlike the proprietary CUDA) is the default level for
any compiler and at this level there is not much compiler can optimize. The efficiency of low-level
system parallel library is dependent on its implementation and not the compiler used to link it to a
program, not to mention that MPI library is distributed also by “non-compiler” vendors (Platform
MPI, OpenMPI). Therefore, it leaves discussion of library-level support for MPI out of topic.

22

OpenMP/Pthreads

OpenCL

CUDA

MPI

0 2 4 6 8 10 12 14

Auto
Directive-based
Library-based

Fig. 1: Different levels of support for parallel standards (both open and proprietary).
The numbers show amount of compilers supporting technology at a specified level.

Directive-based parallelization and auto-parallelization support are the levels where compiler
has the most control over parallelization process and they are the most useful levels for compiler
benchmarking purposes. Directive-based approach may include optimizations involving reduction of
redundant data movement, elimination of unneeded synchronization points and others. Auto-
parallelization level adds an heuristic algorithm to determine the most suitable program part to
perform parallelization. All in all, benchmarking directive-based and automatic parallelization of
compilers may give insight into their overall efficiency.

To summarize, from the parallel applications developer point of view the most useful compiler
facilities aiding in parallelization process are support for compiler-based parallelization and
optimization reporting. In the first case, parallelization reveals compiler's ability to optimize program
in multi-threaded environment and for benchmarking purposes both CPU and GPU parallelization
should be considered (Section 2 and 3). Finally, optimization reports are useful to reveal compiler's
decisions in problematic lines of a source code (Section 4). So, compiler's ability to parallelize on par
with optimization reports can enhance program performance.

2 Compiler-based parallelization efficiency

Compiler-based parallelization is the simplest approach to optimize and boost resource-
intensive programs, and other than that, it is also a good way to show efficiency of compiler's
optimizations with a view to parallel code. One of the most useful optimizations for scientific
applications are those involving loops such as loop tiling, loop unrolling and loop interchange, as they
maximize cache usage when processing large arrays of data [1]. They often work in harmony with
other kinds of optimizations such as vectorization and invariant code motion that further improve
resulting program performance. Thus, auto-parallelization can reveal the level of compiler's “skills”
with a view to these optimizations.

Benchmark was carried out on the basis of two BLAS (Basic Linear Algebra Subprograms)
library implementations and in a similar manner both for CPU and GPU parallelization. The first
implementation is non-optimized reference BLAS implementation [2] compiled with a maximum
optimization level and auto-parallelization options. The second one is hand-tuned GotoBLAS library
[3,4] compiled with self-chosen set of options. In case of GPU OpenACC [4] directives were added
before each outermost for loop inside BLAS routines so that it can be parallelized by the compiler. So,
each compiler built auto-parallelized and hand-tuned versions of the library and PGI also built GPU
version of the library.

BLAS library was chosen because it is de facto standard in scientific software development
and it is also contains the simplest algorithms to parallelize. Algorithms consist of vector-vector,
vector-matrix and matrix-matrix operations that correspond to the Level 1, 2 and 3 of library routines
respectively. Each algorithm includes no more than a triple of nested loops assembled exclusively for
different argument variations (in case of Level 3 – matrix transpositions) [2]. The two inner loops can
be used to expose both coarse-grained parallelism of multiple processor cores and fine-grained

22

parallelism of vector registers. So, the choice of BLAS library was based on a desire to test compilers
on the algorithms that are easy to parallelize.

Benchmarking strategy consisted of running a subset of Level 3 routines with a variable set of
actual arguments' values and using different number of threads. Arguments' variations included
different matrix sizes, transposed/non-transposed cases, upper/lower triangular matrices and left/right
sided equations. Thread number varied from 2 to 12 threads that correspond to the total of 12 machine
cores. Benchmark results were summarized in one table containing approximately 2500 rows for
subsequent analysis.

Average performance of auto-parallelized BLAS code is lesser than of hand-tuned BLAS
library (Table 2), and further investigation shows significant variations in efficiency when using
transposed and non-transposed matrices (Table 1). In case of SGEMM the source code for SGEMM(AT,
B) and SGEMM(AT, BT) differs only in one index (Figure 2), and their relative performance differs by
an order of magnitude. Naturally, this index prevents loop vectorization and leads to ineffective cache
utilization due to non-unit stride memory access pattern. As matrix operations such as SGEMM are not
arithmetically intensive involving no more than floating point additions and multiplications, it is
essential to optimize CPU cache usage and GPU loads/stores coalescing to achieve scalable
performance. However, it is hard for compilers to do so and matrix transpositions lead to performance
degradation.

SGEMM(AT, B) SGEMM(AT, BT)

DO J = 1,N
 DO I = 1,M
 TEMP = ZERO
 DO L = 1,K
 TEMP = TEMP + A(L,I)*B(L,J)
 CONTINUE
 IF (BETA.EQ.ZERO) THEN
 C(I,J) = ALPHA*TEMP
 ELSE
 C(I,J) = ALPHA*TEMP +
BETA*C(I,J)
 END IF
 CONTINUE
CONTINUE

DO J = 1,N
 DO I = 1,M
 TEMP = ZERO
 DO L = 1,K
 TEMP = TEMP + A(L,I)*B(J,L)
 CONTINUE
 IF (BETA.EQ.ZERO) THEN
 C(I,J) = ALPHA*TEMP
 ELSE
 C(I,J) = ALPHA*TEMP +
BETA*C(I,J)
 END IF
 CONTINUE
CONTINUE

Fig. 2: Source code for SGEMM(AT, B) and SGEMM(AT, BT) differs only in one index and
performance differs by an order of magnitude (see Table 1).

GCC inferior performance compared to other compilers seems to be attributed to the
restriction of the compiler to parallelize only innermost loops [5]. Since benchmarked Level 3 routines
contain loops nested up to the third level it is inefficient to parallelize only innermost loop as it may
involve synchronization overheads and also as it constitutes only a part of a whole problem. As GCC
does not produce any optimization report during compilation there is no easy way to give a reliable
explanation of low performance.

Performance, Mflops PGI SGEMM cache statistics ×109

op(A) op(B) Intel PGI GCC PGI CUDA Reads Writes Misses Instructions

AT B 19108 10193 1683 1326 137.4 0.016 0.008 412

A BT 17935 9738 2982 1341 137.5 68 0.039 481

A B 16824 9453 3110 2335 137.5 68 0.008 481

AT BT 3424 946 199 2407 137.4 0.016 0.104 549

22

Table 1. The effect of matrix transposition on the performance of auto-parallelized BLAS
library.

GPU parallelization which was carried out on the basis of directive-based PGI CUDA
compiler shows inferior performance compared to other compilers, however, matrix transpositions
have an opposite effect on the efficiency (Table 1). The effect. which consists of GPU code having the
best performance in cases where CPU code having the worst, is attributed to CUDA storing matrices
in a row-major order in contrast to Fortran storing them in a column-major order. Differences of
matrix storage scheme affects memory access pattern which in turn affects CPU cache utilization and
GPU memory loads/stores coalescing and finally defines efficiency of arithmetically non-intensive
code. Although, GPU is perfectly suitable for matrix operations it is inherently parallel device in
contrast to CPU and the best performance is generally achieved by using specific algorithm and
implementation. So, to show comparable performance GPU compiler should rewrite a whole routine
and not just parallelize existing CPU code. All in all, the best results are achieved when parallelizing
code on CPU.

Routine
Hand-tuned

(CPU)
Parallelized

(CPU)
Parallelized

(GPU)

Intel PGI GCC Intel PGI GCC PGI

SGEMM 111974 130197 57816 16173 7333 1824 1939

SSYMM 108611 130466 60525 9089 12123 2390 1632

SSYR2K 103813 112828 60230 18157 13728 3136 1917

SSYRK 95721 106000 43239 14562 10027 1811 1218

STRMM 99073 115354 43204 14423 7148 1990 2102

STRSM 97371 115009 41857 11381 6295 1745 1998

Table 2: Compiler parallelization efficiency of Intel, PGI and GCC compilers in Mflops.
Target platform: HP SL390s G7, 2x Intel X5650 2.67 Ghz (12 cores total), 96 Gb RAM, 3x NVIDIA

Tesla M2050.

To summarize, benchmarks show that average performance of hand-tuned optimized BLAS
library is an order of magnitude higher than of automatically parallelized library. The largest
performance variations appear when performing operations on transposed matrices that affect efficient
CPU cache usage and GPU memory operations coalescing. Finally, as GPU and CPU vastly differ in
their architectures and programming style, the best GPU performance is achieved when implementing
algorithm from a scratch and not adapting CPU source code. All in all, compiler auto-parallelization
facilities can be seen as a means of making the first parallel program prototype which is incrementally
optimized by hand to reach its best performance.

3 Compiler-based parallelization overhead

Overheads of compiler-based parallelization are defined by a corresponding runtime library
implementation and are imposed by usage of directives. These include thread scheduling algorithms
overhead, parallel region entering overhead and synchronization constructs overhead. Analysis of
those overheads can be performed using micro benchmarks specifically designed to measure
efficiency of directives.

Benchmark, which was carried out via EPCC benchmark suite [6] developed to analyze multi-
processor machine efficiency, showed that it can also be used to compare compiler's OpenMP runtime
library performance. In the original paper this suite is used to show variations in directive overheads
running benchmarks on different hardware platforms, however, if the source code is translated by

22

different compilers and run on a single machine then it shows representable performance of a
particular OpenMP runtime library. So, EPCC benchmark suite was used to measure overhead of
OpenMP directives using a set of supporting compilers.

Results of the benchmarks revealed most directives having similar overheads in case of PGI
and Intel compilers and larger overheads in case of GCC, however, there are also some directives with
different overhead pattern. These are omp reduction and omp schedule(dynamic) showing inferior
performance of PGI and omp schedule(guided) showing inferior performance of both PGI and Intel
compilers (Figure 4). In addition, these directives also account for no more than 5% of a total count of
omp for directives used in examined scientific applications (Figure 5). All in all, commercial
compilers have more efficient OpenMP runtime library implementations than open source GCC
compiler does.

guided

auto

reduction

dynamic

default

static

0 10 20 30 40 50 60 70 80

Fig. 4: Overhead of omp schedule(guided) directive
showing inferior performance of commercial PGI

and Intel compilers compared to open source GCC.
Target platform: HP Proliant DL980, 8x Intel

X7560 2.2 Ghz (64 cores), 512 Gb RAM.

Fig. 5: Distribution of scheduling
and reduction directives among all

omp for directives in scientific
software packages WRF (Weather

Research Forecasting) and
WaveWatch3.

4 Optimization reports

Optimization report is a special type of compiler's output telling developer about compiler's
decisions in optimization process. Although not standardized, this output often includes decisions on
loop vectorization, loop tiling, data distribution during loop parallelization and also decisions on an
alternative loop code generation. The information is presented in a form of hints about why particular
optimization technique was or was not employed, thus providing developer with a way of optimizing a
source code for a given compiler.

Optimization hints may be useful, however, it is hard to measure their impact on an
application performance. On one hand, they provide user with a knowledge of compiler's inner
workings relieving him from tedious machine code analysis. On the other hand, following
optimization hints of one compiler not always results in an optimal code for another compiler. So, this
limits usefulness of optimization reports only to the most simple cases of inefficient code structure
considering target's machine architecture.

 Conclusion

In conclusion, practical efficiency of optimizing compilers is dependent on many factors. Intel
compiler lets developer achieve easy parallelization of a program prototype, but reduced efficiency of
a hand-tuned source code version. In contrast to this, PGI compiler offers quite an opposite: a
prototype is slow but a final version is highly optimized. In either case, usage of non-commercial GCC

22

compiler degrades performance of both a prototype and a final application. From a different point of
view, one can use the most efficient compiler on a corresponding development stage and also for a
particular target platform. All in all, final program performance is dependent on many factors and
compiler's impact shall not be considered in isolation.

Acknowledgements

The research was carried out using computational resources of Resource Center
Computational Center of Saint-Petersburg State University (T-EDGE96 HPC-0011828-001) that
provided commercial compiler's licenses and access to high-performance machines for the scientific
work.

References
[1] Bacon D.F., Graham, S.L., Sharp O.J. Compiler transformations for high-performance

computing. ACM Computing Surveys (CSUR). Vol. 26:4, pp. 345-420, 1994
[2] J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling, A set of Level 3 Basic

Linear Algebra Subprograms, ACM Trans. Math. Soft., 16 (1990), pp. 1-17.
[3] Kazushige Goto and Robert A. van de Geijn. "Anatomy of High-Performance Matrix

Multiplication," ACM Transactions on Mathematical Software 34(3): Article 12, 25
pages, May 2008.

[4] Kazushige Goto and Robert van de Geijn. "High-Performance Implementation of the
Level-3 BLAS." ACM Transactions on Mathematical Software 35(1): Article 4, 14
pages, July 2008.

[5] http://gcc.gnu.org/wiki/Graphite/Parallelization . GCC Graphite Parallelizer official
WIKI page.

[6] J. m. Bull. Measuring Synchronisation and Scheduling Overheads in OpenMP. 1999.

22

http://gcc.gnu.org/wiki/Graphite/Parallelization

