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Processing  of  large  amounts  of  data  often  consists  of  several  steps,  e.g.  pre-  and
post-processing stages, which are executed sequentially with data written to disk after each step,
however, when pre-processing stage for each task is different the more efficient way of processing
data is to construct a pipeline which streams data from one stage to another. In a more general case
some processing stages can be factored into several  parallel  subordinate stages thus forming a
distributed  pipeline  where  each  stage  can  have  multiple  inputs  and  multiple  outputs.  Such
processing pattern emerges in a problem of classification of wave energy spectra based on analytic
approximations which can extract different wave systems and their parameters (e.g. wave system
type,  mean  wave  direction)  from  spectrum.  Distributed  pipeline  approach  achieves  good
performance compared to  conventional “sequential-stage” processing.

Introduction

The problem of classification of wave energy spectra is both data- and compute-intensive which
makes it on one hand amenable to data-centric programming approaches like Hadoop and on the other
hand to parallel programming techniques. In the “mapping” phase spectra should be pre-processed and
converted to some convenient  format and in the “reduction” phase resulting spectra are classified
using genetic optimisation algorithm. These steps represent general algorithm for data processing with
Hadoop, however, classification algorithm is itself parallel which makes it difficult to program in Java
(the language in which Hadoop programmes are usually written). Therefore, we feel that Hadoop is
not the most efficient way to solve the problem and a distributed programme which mimics useful
Hadoop behaviour should be used instead.

This work is a short preview of a alternative technological framework being developed and it is
compared to Hadoop implementation only.

1 Implementation

The  NDBC  dataset2 consists  of  spectra  which  are  sorted  by  year  and  station  where
measurements  were  made.  Data  for  each  spectrum is  stored  in  five  variables  which  are  used  to
reconstruct original frequency-directional spectrum with the following formula:

Here ω denotes frequency, ϑ – wave direction, r1,2 and α1,2 are parameters of spectrum decomposition
and S0 is the non-directional spectrum [1]; values of r1,2, α1,2, S0  are acquired through measurements.

1 The research was carried out using computational resources of Resource Center Computational Center
of  Saint  Petersburg  State  University  (T-EDGE96  HPC-0011828-001)  and  partially  supported  by  Russian
Foundation for Basic Research (project No. 13-07-00747) and Saint Petersburg State University (project No.
9.38.674.2013 and 0.37.155.2014).
2 http://www.ndbc.noaa.gov/dwa.shtml



Detailed properties of the dataset used in evaluation are listed in Table 1.
The algorithm of processing spectra is as follows. First, current directory is recursively scanned

for input files. All directories are recursively distributed to processing queues of each machine in the
cluster. Processing begins with joining corresponding measurements for each spectrum variables into a
tuple which is subsequently classified by a genetic algorithm (this algorithm is not discussed in the
paper and in fact can be replaced by any other suitable classification algorithm). While processing
results  are  gradually  copied  back  to  the  machine  where  application  was  executed  and  when  the
processing is complete the programme terminates. The resulting implementation is shown in Figure 1.

Directory  structure  can  be  arbitrary  and  the  only  thing  it  serves  is  to  distribute  the  data,
however, files containing corresponding measurements should be placed in a single directory so that
no joining of variables residing in different machines can happen. In this test spectra were naturally
sorted into directories by year and station.

Dataset size 144MB

Dataset size (uncompressed) 770MB

Number of wave stations 24

Time span 3 years (2010–2012)

Total number of spectra 445422

Table 1. Dataset properties.

The feature which makes this implementation different from other similar approaches is that
both processors and disks work in parallel throughout the programme execution. Such behaviour is
achieved with assigning a separate thread (or thread pool) for each device and placing tasks in the
queue for  the  corresponding device in  this  pool.  As  tasks  that  read from the disk complete  they
produce tasks for CPUs to process this data and place them into the processor task queue. In similar
way when data processing tasks complete they place tasks to write the data into the disk task queue. In
similar vein via a separate task queue network devices transmit the data to a remote node. So, each
device has its own thread (or thread pool) and all of them work in parallel by placing tasks in each
other's task queues. Since tasks “flow” from one queue to another and queues can reside on different
machines this approach is called distributed pipeline.

Figure 1. Implementation diagram for distributed 
pipeline.



2 Evaluation

The system setup which was used to test the implementation consisted of commodity hardware
and open-source software (Table 2) and evaluation was divided into two stages.  In the first  stage
Hadoop was installed on each node of the cluster and was configured to use host file system as a
source of data so that performance of parallel file system which is used by default in Hadoop can be
factored out from the comparison. To make this possible the whole dataset was replicated on each
node and placed in the directory with the same name. In the second stage Hadoop was shut down and
replaced by newly developed application and dataset directories were statically distributed to different
nodes to nullify the impact of parallel file system on the performance.

Component Details Component Details

CPU model Intel Q9650    Operating system Debian Linux 7.5

CPU clock rate (GHz) 3.0 Hadoop version 2.3.0

No. of cores per CPU 4 GCC version 4.7

No. of CPUs per node 1 Compile flags -std=c++11

RAM size (GB) 4

Disk model ST3250318AS

Disk speed (rpm) 7200

No. of nodes 3

Interconnect speed (Mbps) 100

Table 2. Hardware and software components of the system.

In  the  test  it  was  found  that  Hadoop  implementation  has  low  scalability  and  maximum
performance of approx. 1000 spectra per second and alternative implementation has higher scalability
and maximum performance of approx. 7000 spectra per second (Figure 2).  The source of Hadoop
inefficiency was found to be temporary data files which are written to disk on each node. These files
represent sorted chunks of the key-value array and are part of implementation of merge sort algorithm
used to distribute the keys to different nodes. For NDBC dataset the total size of these files exceeds
the  size  of  the  whole  dataset  which  appears  to  be  the  consequence  of  Hadoop  not  compressing
intermediate  data  (the  initial  dataset  has  compression  ratio  of  1:5,  see  Table  1).  So,  the  sorting
algorithm and careless handling of compressed data led to performance degradation and inefficiency
of Hadoop for NDBC dataset.



Figure 2. Performance of Hadoop and 
distributed pipeline implementations.

The sorting is not needed to distribute the keys and in the alternative implementation directory
hierarchy is used to determine machine for reduction. For each directory a separate task is created
which subsequently creates tasks for each sub-directory and each file. Since each task can interact with
its parent when the reduction phase is reached reduction tasks are created on the machines where
parents were executed previously.

Conclusions and future work

No redundant sorting nor any kind of temporary files are used in the alternative implementation
which allows it to scale well and show better performance compared to Hadoop approach. The future
work  is  to  incorporate  dynamic  distribution  of  files  to  hosts  and  fault  tolerance  into  the
implementation.
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