
The 14
th

 International Ship Stability Workshop (ISSW), 29
th

 September- 1
st
 October 2014, Kuala Lumpur, Malaysia 

 

. 
© Marine Technology Centre, UTM 
 
 

Calculation scheme for wave pressures  

with autoregression method 

Alexander Degtyarev, Ivan Gankevich 

Dept. of Computer Modelling and Multiprocessor Systems, Faculty of Applied Mathematics and Control Processes, Saint Petersburg 

State University, Russia 

 

Abstract: In the problem of simulation of marine object behaviour in a seaway determination of pressures exerted on the object is 

often done on assumption of ocean wave amplitudes being small compared to wave height, however, this is not the best approach for 

real ocean waves. This was done due to underlying wind wave models (such as Longuet—Higgins model) lacking ability to produce 

large amplitude waves. The other option is to use alternative autoregressive model which is capable of producing real ocean waves, 

but in this approach pressure calculation scheme should be extended to cover large-amplitude wave case. It is possible to obtain 

analytical solutions for both two- and three-dimensional problem and it was found that corresponding numerical algorithms are 

simple and have efficient implementations compared to small amplitude case where the calculation is done by transforming partial 

differential equations into numerical schemes. In the numerical experiment it was proved that obtained formulae work for waves of 

arbitrary amplitudes whereas existing solutions work in small-amplitude case and diverge in large amplitude case. 
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1. Introduction 

For many years marine object behaviour in a 

seaway was investigated through experiments 

conducted in a towing tank and although in some 

cases this approach proved to be useful now it has 

some disadvantages compared to modern techniques. 

First of all, conducting a single experiment in a 

towing tank and collecting desired data takes as long 

as one month to complete. Second, towing tank 

provides machinery to generate only plane waves 

which propagate in at most one direction and process 

of propagation is disturbed by walls of a pool so that 

real three-dimensional sea waves cannot be generated 

in the experiment. Finally, all the simulations in a 

towing tank are carried out not for real-sized ship but 

for its model and using fitting criteria to generalise 

experimental results for the real ship is not always 

feasible; so not every aspect of real behaviour can be 

captured in a towing tank. As a result of these 

deficiencies and also as a consequence of 

development of high-performance computer machines 

more and more experiments are replaced by 

computer-based simulations conducted in a virtual 

testbed.  

Virtual testbed being a computer program to 

simulate physical and anthropogenic phenomena can 

be seen as an evolution and virtual analogue of a 

towing tank and it not only lacks disadvantages of a 

towing tank mentioned above but also offers much 

broader set of simulation options. For example, in a 

computer program with help of a proper sea wave 

generator it is possible to combine climatic and wind 

wave models [1] and to use assimilated wind velocity 

field data to simulate wind waves and swell which 

occur in a particular region of ocean and also to 

simulate evolution of wave climate between normal 

and storm weather. Another option is to simulate 

water streams, ice cover, wave deflection and wave 

diffraction. However, none of these options were 

implemented in software to a full extent and often 

used wind wave models are capable of generating only 
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linear sea. So, virtual testbed approach takes marine 

object behaviour simulations one level higher than 

level offered by towing tank, however, not all the 

potential of this approach is realised.  

Not only different weather scenarios are not 

implemented in a virtual testbed but wind wave 

models such as Longuet—Higgins model are capable 

of generating only linear sea and more effective 

models can be developed. An alternative 

autoregressive model is a wind wave model proposed 

by Rozhkov, Gurgenidze and Trapeznikov [2] and it is 

advantageous in many ways over Longuet—Higgins 

model when conducting simulations in a virtual 

testbed. First, it allows generating realisations of 

arbitrary amplitude ocean waves whereas Longuet—

Higgins model formulae are derived using 

assumptions of small-amplitude wave theory and are 

not suitable to generate surfaces of large-amplitude 

waves [3]. Second, it lacks disadvantages of 

Longuet—Higgins model: it has high convergence 

rate, its period is limited only by period of 

pseudo-random number generator and it can model 

certain nonlinearities of wave motion such as 

asymmetric distribution of wavy surface elevation [4]. 

Finally, autoregressive model has efficient and fast 

numerical algorithm compared to Longuet—Higgins 

model which reduces simulation time [5]. However, 

autoregressive model formulae are not derived from 

partial differential equations of wave motion but 

instead represent non-physical approach to wavy 

surface generation and to prove adequacy of such an 

approach series of experiments were conducted to 

show that wavy surface generated by this model 

possesses integral characteristics as well as dispersion 

relation of real ocean waves and an ability to 

reproduce storm weather [3]. 

Theory of small amplitude waves is also used to 

determine pressures under sea surface and methods for 

determining pressures should also be modified to 

match autoregressive model. 

2. Determining pressures 

2.1 Two-dimensional case 

The problem of pressure determination under real 

sea surface in case of inviscid incompressible fluid is 

reduced to solving Laplace equation with dynamic and 

kinematic boundary conditions [6] and in 

two-dimensional case an analytical solution can be 

obtained. In two-dimensional case the corresponding 

system of equations  
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can be solved in three steps. The first step is to solve 

Laplace equation using Fourier method and obtain 

solution of the form of Fourier integral 

      .dλeλE=tz,x, ιx+zλ






                    (2) 

The second step is to determine coefficients E(λ) by 

substituting this integral into the second (kinematic) 

boundary condition. The boundary condition is held 

on the free wavy surface z=ς(x, t) so that velocity 

potential derivative φz(x, t) can be evaluated using the 

chain rule.  

After performing these steps the equation  
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which represents Laplace transform formula can be 

obtained and inverted to obtain formula for 

coefficients E(λ): 
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The final step is to substitute formula for 

coefficients into (2) which yields equation 
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Using this equation an explicit formula for pressure 

determination can be obtained directly from the first 

boundary condition: 
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Analytical solution was compared to the solution  
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obtained for small-amplitude waves [7] and numerical 

experiments showed good correspondence rate 

between resulting velocity potential fields. In order to 

obtain velocity potential fields realisations of the 

wavy sea surface were generated by autoregressive 

model differing only in wave amplitude. In numerical 

implementation infinite outer and inner integral limits 

of (3) were replaced by the corresponding wavy 

surface size (x0, x1) and wave number interval (λ0, λ1) 

so that inner integral converges (this interval 

contained only those wave numbers which were 

present in wave energy spectrum of the realisation). 

Experiments were conducted for waves of both small 

and large amplitudes and in case of small-amplitude 

waves both solutions produced similar results, 

whereas in case of large-amplitude waves only general 

solution (3) produced stable velocity field 

(Figure 12). Therefore, general solution works for 

different wavy sea surfaces and does not impose 

restrictions on the wave amplitude. 

 

Fig. 1 – Velocity field for small-amplitude case, u1 – general 

solution, u2 – solution for small-amplitude waves. 

 

Fig. 2 – Velocity field for large-amplitude case, u1 – general 

solution, u2 – solution for small-amplitude waves. 

Resulting solution (3) can be used to compute impact 

of hydrodynamic forces on a ship's hull and is 

advantageous in several ways. First, it can be used for 

wavy surfaces of arbitrary amplitudes to support 

simulations for small-sized ships or storm weather in a 

virtual testbed. Second, the formula is analytical and 

explicit so that no numerical scheme is needed to 

implement solution of initial system of partial 

differential equations (1) on a computer; hence, 

resulting algorithm is fast and easily scalable on a 

multiprocessor computer. 

2.2 Three-dimensional case 

The system of equations 
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for three-dimensional case is solved in a way similar 

to the two-dimensional problem, however, it involves 

some additional steps. The first step is to obtain the 

solution of Laplace equation using Fourier method in 

a form of 
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22
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The second step is to substitute this integral into the 

kinematic boundary condition, however, here integral 

transform can not be readily applied. In order to 

circumvent this wave numbers (λ, γ) can be written in 

polar coordinates (r, θ) and space coordinates 

(x, y, ζ(x, y)) converted to cylindrical coordinates 

(ρ, ψ, ζ(ρ, ψ)): 

    

    
 

 

.,
1

,

,
1

sincos
1

sincos

,cosexp,

sincos

2

132

2

1

1

0

321

2

0

where

ErEifif

f

rirrE

fffddrt









  





























 

After performing these steps the integral on the right 

hand side can be written as two-dimensional 

convolution and then Fourier transform can be applied 

(see Appendix): 
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The final expression is written as follows. 
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The explicit formula for pressure determination 
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is obtained from the first boundary condition the same 

way it is done for two-dimensional case. 

Compared to the solution for small-amplitude 

waves new solution not only works for arbitrary wave 

amplitudes but also has a number of computational 

advantages of corresponding numerical algorithm. The 

solution for small-amplitude case is written as an 

elliptic partial differential equation 
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which can be solved using multi-grid method [7]. 

Compared to this formula the new solution requires 

only numerical integration and fast Fourier transform 

(FFT) implementations which are well-known, simple, 

and already available in scientific software libraries. 

The other advantage is that these algorithms have 

efficient GPU implementations which allow 

constructing very efficient computational CPU–GPU 

pipeline because autoregressive model shows high 

performance only on CPU [5]. 

3. Conclusions 

Obtained solutions for two- and three-dimensional 

problems can be used to compute hydrodynamic 

pressures exerted on a marine object in a seaway, they 

do not pose restrictions on wave amplitude and are 

analytical thus having efficient implementations on 

hybrid CPU & GPU computer architectures. 

The future work is to implement three-dimensional 

problem solution on GPU and measure performance 

of CPU–GPU computational pipeline. 
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Appendix 

Forming two-dimensional convolution 

Two-dimensional convolution on the right hand side 

of equation 
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can be made by applying the following transform. 

'.exp,],'exp[,'exp 12 rEErr  

Now equation can be written as 
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and two-dimensional convolution can be applied: 
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