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1 INTRODUCTION

For many years marine object behavior in a seaway
was investigated through experiments conducted in a
towing tank and although in some cases this approach
proved to be useful it has some disadvantages com�
pared to modern techniques. First of all, conducting a
single experiment in a towing tank and collecting
desired data takes as long as one month to complete.
Second, towing tank provides machinery to generate
only plane waves which propagate in at most one
direction and process of propagation is disturbed by
walls of a pool so that real three�dimensional sea waves
cannot be generated in experiment. Finally, all the
simulations in a towing tank are carried out not for
real�sized ship but for its model and using fitting crite�
ria to generalize experiment results for real ship is not
always feasible; so not every aspect of real behavior can
be captured in towing tank. As a result of these defi�
ciencies and also as a consequence of development of
high�performance computer machines more and
more experiments conducted in a towing tank are
replaced by computer�based simulations conducted in
a virtual testbed.

Virtual testbed being a computer program to simu�
late physical and anthropogenic phenomena can be

1 The article is published in the original.

seen as evolution and virtual analog of a towing tank
and it not only lacks disadvantages of a towing tank
mentioned above but also offers much broader set of
simulation options. For example, in a computer pro�
gram with help of a proper sea wave generator it is pos�
sible to combine climatic and wind wave model [5] and
to use assimilated wind velocity field data to simulate
wind waves and swell which occur in a particular
region of ocean and also to simulate evolution of wave
climate between normal and storm weather. Another
option is to simulate water streams, ice cover, wave
deflection and wave diffraction. However, none of these
options were implemented in software to a full extent
and often used wind wave models are capable of gener�
ating only linear sea. So, virtual testbed approach takes
marine object behavior simulations one level higher
than level offered by towing tank, however, not all the
potential of this approach is realized.

Not only different weather scenarios are not imple�
mented in a virtual testbed but wind wave models such
as Longuet–Higgins model are capable of generating
only linear sea and more effective models can be devel�
oped. An alternative autoregressive model is a wind
wave model proposed by Rozhkov, Gurgenidze and
Trapeznikov [2] and it is advantageous in many ways
over Longuet–Higgins model when conducting simu�
lations in a virtual testbed. First, it allows generating
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realizations of arbitrary amplitude ocean waves
whereas Longuet–Higgins model formulas are derived
using assumptions of small�amplitude wave theory
and are not suitable to generate surfaces of large�
amplitude waves [4]. Second, it lacks disadvantages of
Longuet–Higgins model: it has high convergence rate,
its period is limited only by period of implemented
pseudo�random number generator and it can model
certain nonlinearities of wave motion such as asym�
metric distribution of wave surface elevation [3].
Finally, autoregressive model has efficient and fast
numerical algorithm compared to Longuet–Higgins
model which reduces simulation time [6]. However,
autoregressive model formulas are not derived from
partial differential equations of wave motion but
instead represent non�physical approach to wavy sur�
face generation and to prove adequacy of such an
approach series of experiments were conducted to
show that wavy surface generated by this model pos�
sesses integral characteristics as well as dispersion rela�
tion of a real ocean waves and an ability to reproduce
storm weather [4].

Theory of small amplitude waves is also used to
determine pressures under sea surface and methods for
determining pressures should also be modified to
match autoregressive model.

1. PRESSURE DETERMINATION

The problem of pressure determination under real
sea surface in case of inviscid incompressible fluid is
reduced to solving Laplace equation with dynamic and
kinematic boundary conditions [7] and in two�dimen�
sional case an analytical solution can be obtained. In
two�dimensional case the corresponding system of
equations

 at z = ζ(x, t), (1)

ζt + ζxφx = φz at z = ζ(x, t)

can be solved in three steps. The first step is to solve
Laplace equation using Fourier method and obtain
solution of the form of Fourier integral

(2)

The second step is to determine coefficients E(λ)
by substituting this integral into second (kinematic)
boundary condition. The boundary condition is held
on the free wavy surface z = ζ(x, t) so that velocity
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potential derivative φz(x, t) can be evaluated using the
chain rule. After performing these steps the equation

which represents Laplace transform formula can be
obtained and inversed to obtain formula E(λ):

(3)

The final step is to substitute (3) into (2) which
yields equation

(4)

Using this equation an explicit formula for pressure
determination can be obtained directly from the first
boundary condition:

Analytical solution (4) was compared to solution

(5)

obtained for small�amplitude waves [1] and numerical
experiments showed good correspondence rate
between resulting velocity potential fields. In order to
obtain velocity potential fields realizations of the wavy
sea surface were generated by autoregressive model
differing only in wave amplitude. In numerical imple�
mentation infinite outer and inner integral limits of (4)
were replaced by the corresponding wavy surface size
(x0, x1) and wave number interval (λ0, λ1) so that inner
integral of (4) converges. Experiments were conducted
for waves of both small and large amplitudes and in
case of small�amplitude waves both solutions pro�
duced similar results, whereas in case of large�ampli�
tude waves only general solution (4) produced stable
velocity field (figure). Therefore, general solution
works for different wavy sea surfaces and does not
impose restrictions on wave amplitude.
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2. CONCLUSION AND FUTURE WORK

Resulting solution (4) can be used to compute
impact of hydrodynamic forces on a ship’s hull and is
advantageous in several ways. First, it can be used for
wavy surfaces of arbitrary amplitudes to support simu�
lations for small�sized ships or storm weather in a vir�
tual testbed. Second, the formula is analytical and
explicit so that no numerical scheme is needed to
implement solution of initial system of partial differ�
ential Eqs. (1) on a computer. Moreover, resulting
algorithm is fast and easily scalable on a multiproces�
sor computer because it is based on an explicit for�
mula. The future work is to extend this solution to
three�dimensional case.
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Comparison of velocity fields produced by general solution (u1) and by solution for small�amplitude waves (u2). Velocity fields for
small�amplitude (left) and large�amplitude (right) cases. 


