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Abstract⎯Dealing with large volumes of data is resource-consuming work which is more and more often del-
egated not only to a single computer but also to a whole distributed computing system at once. As the number
of computers in a distributed system increases, the amount of effort put into effective management of the sys-
tem grows. When the system reaches some critical size, much effort should be put into improving its fault tol-
erance. It is difficult to estimate when some particular distributed system needs such facilities for a given
workload, so instead they should be implemented in a middleware which works efficiently with a distributed
system of any size. It is also difficult to estimate whether a volume of data is large or not, so the middleware
should also work with data of any volume. In other words, the purpose of the middleware is to provide facil-
ities that adapt distributed computing system for a given workload. In this paper we introduce such middle-
ware appliance. Tests show that this middleware is well-suited for typical HPC and big data workloads and its
performance is comparable with well-known alternatives.
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1. INTRODUCTION

Today’s methods and technologies for big data pro-
cessing are focused on some particular use cases: many
of them are as simple as parallel fault-tolerant imple-
mentations of well-known algorithms from functional
languages [12–14], others are reimplementations of
well-established structured data querying techniques
[15–17]. Although, most of the technologies share the
same job scheduler [18], each of them requires its own
distributed platform (built on top of the scheduler) to
operate. Authors’ experience shows that installing,
configuring, securing and maintaining such systems
requires significant effort, not to mention that the
usage of compute and storage resources is not always
optimal as you need to allocate a separate machine
(or two for fault tolerance) for each service. Moreover,
simple data processing methods implemented in these
technologies require much programming effort to
become usable for data consolidation tasks.

These findings led to an idea of making a scheduler
to run not only batch jobs, but also services for data
processing using the same API. This change makes the
scheduler a central part of the distributed system
which is responsible for fault tolerance of each service
as well as each job.The approach makes it possible to
push fault-tolerance, synchronisation and other com-
mon distributed application mechanics to the code
base of the scheduler which makes implementation of
each service light-weight and lessen the whole system
administration burden.

This paper is a generalisation and interpretation of
results obtained by the authors during last two years.
Additional details, more experiments and results can
be found in some previous works [19–21] which dealt
with particular aspects of the middleware system.

2. RELATED WORK
There are multiple ongoing efforts to make writing

and running distributed applications simple [18, 22, 23],
however, these efforts are not consolidated and mainly
focused on some particular aspect of distributed oper-
ation. For example, in Etcd and ZooKeeper [22, 23] it
is possible to reliably store configuration items and
application state, but there is no API for distributing
applications and providing fault tolerance for them. It
is assumed that application writers would implement
their own mechanism for fault tolerance using this dis-
tributed store. In YARN [18] there is no standard way
of implementing services, i.e. there is no service dis-
covery, service endpoints and supporting APIs. So,
these technologies are integral parts of the middleware
appliance for writing and running distributed applica-
tions, but they do not constitute the whole.

Another important aspect of a distributed system is
asycnhronous operation, which is typically imple-
mented in an application event-driven architecture
(which consists of thread/process pool and task/event
queue). This architecture has been used extensively to
create desktop applications with graphical user inter-
face since MVC paradigm [10] was developed and
nowadays it is also used to compose enterprise appli-
cation components into a unified system with message1 The article is published in the original.
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queues [11], however, it is rarely used in scientific
applications. One example of such usage is Goto-
BLAS2 library [8, 9]. Although, it is not clear from the
referenced papers, analysis of its source code shows
that this library uses a specialised server object to
schedule matrix and vector operations’ kernels and
compute them in parallel. The total number of CPUs
is defined at compile time and they are assumed to be
homogeneous. There is a notion of a queue imple-
mented as a linked list of objects where each object
specifies a routine to be executed and data to be pro-
cessed and also a number of CPUs to execute it on.
Server processes these objects in parallel, and each
kernel can be executed in synchronous (blocking) and
asynchronous (non-blocking) mode. GotoBLAS2
library exhibits competitive performance compared to
other BLAS implementations [8, 9] and it is a good
example of viability of event-driven approach in scien-
tific applications. Considering this, an event-driven
system can be seen as a generalisation of this approach
to a broader set of applications.

3. BASIC DESIGN PRINCIPLES 
AND RATIONALE

Our middleware system is based on several simple
principles which govern architectural decisions for it.
The principles follow.

(1) The data is considered big, if its pre- and post-
processing time is much larger than processing time.
Pre- and post-processing includes general I/O, com-
pressing/decompressing, encoding/decoding, filter-
ing and other auxiliary operations. It follows that big
data does not always have big volume, and tightly-cou-
pled and semi-structured data is also considered big.
This principle allows to bridge the gap between
high-performance computing and big data applica-
tions, and use the same API for both. So, the distinct
property of big data applications is that their parallel
tasks are bound to nodes where input data is located.

The key difference of this definition of “big data” is
that it does not try to capture qualitative aspects of big
data processing like many other definitions do [24],
but it attempts to pin the point where a programmer
should care more about data handling code perfor-
mance than performance of all other code. In other
words, for big data problems optimisation of non data
handling code does not give large increase in perfor-
mance. One can argue, that in big data applications all
the code does data handling, however, in our view big
data problems have much broader scope than prob-
lems handled by Hadoop and MapReduce. In other
words, big data is not only Hadoop but any application
where data processing performance matters. So, our
definition captures quantitative aspects of big data,
such as volume, connectedness and density. We hope,
that this definition is useful for developing big data
related middleware as it is easy to mathematically for-

malise quantitative aspects and use them to derive
optimal parameters for the system.

(2) Each dataset has two dynamically adjustable
parameters: the number of replicas and the number of
chunks. These parameters are capped by physical con-
straints such as total number of nodes, maximal num-
ber of nodes per job etc., and are used to adapt
read/write performance of a dataset for a given work-
load. For example, if a dataset is used for searching, its
number of replicas is dynamically increased to trade
write performance for read performance, and if this
dataset is not accessed for a long period of time its
number of replicas is decreased to some minimal
number to save disk space. This principle makes the
whole system agile and allows automatic archiving of
infrequently used data.

(3) The API for parallel processing of big data is
based on micro-kernels – special event-driven objects
implementing callbacks for processing, collecting
results from subordinates and reading/writing. These
micro-kernels use subordinate kernels to process data
in parallel and always bind to a compute node where
the data chunk (if any) is stored. The API allows
expressing problem solution in loosely-coupled
parameterised modules, which solve one particular
part of the problem; there are no messages in this con-
text, instead a micro-kernel may migrate to another
compute node to communicate with its parent or some
other micro-kernel.

These principles allow building scalable system
with concise API suitable for both high-performance
computing and big data applications.

4. IMPLEMENTATION
The distributed system consists of the middleware

core providing API for transmitting/receiving micro-
kernels over the network, and several applications
based on this API which discover and update the list of
healthy cluster nodes, manage file replicas and expose
a web interface for monitoring and querying system
status. The service and the applications run on each
node of the cluster.

4.1. Middleware Core and API
The core is implemented as a small and

light-weight Linux daemon written in C++. It con-
sumes minimal amount of RAM and its source code
base contains less than 10000 SLOC. The sole purpose
of the core is to provide API for application writers to
create, send and receive micro-kernels. So, the core can
be seen as a cluster-wide scheduler for micro-kernels.

The feature which distinguishes micro-kernels
from other parallel programming techniques is an
ability to create subordinate kernels to describe com-
putations. Multiple subordinate kernels are always
executed in parallel (if the number of processor cores
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permits) and their principal is deleted only when all of
them completed execution. This allows modelling
SIMD, MIMD and MISD parallel programming pat-
terns. If the problem can not be described by a parallel
algorithm, but there are multiple inputs to it, a
micro-kernel can be created for each data file. This
effectively duplicates kernel hierarchy for each file
automatically creating UNIX-like pipeline. So, the
notion of micro-kernel is general enough to express
both parallel computations and pipelined execution of
programmes.

The feature that makes this implementation differ-
ent from other similar approaches is that both proces-
sors and disks work in parallel throughout the pro-
gramme execution. Such behaviour is achieved with
assigning a separate thread pool for each device and
placing kernels in the queue for the corresponding
device. As kernels that read from the disk complete,
they produce kernels for CPUs to process this data and
place them into the CPU kernel queue. In similar way,
when data processing kernels complete, they place
tasks to write the data into the disk kernel queue. Sim-
ilarly, via a separate kernel queue network devices send
and receive the data from a remote node. So, each
device has its own thread pool with a kernel queue,
and all of them work in parallel by placing kernels in
each other’s kernel queues.

The feature that makes micro-kernels suitable for
big data processing is an ability to bind to a compute
node where an abstract resource is located. For now
the resource is simply a file stored on local file system.
Files are indexed locally and the resulting index is rep-
licated to a principal node (principal and subordinate
nodes are determined by discovery algorithm, see
Section 2.2). Hierarchy of nodes is used to efficiently
search for files: the search starts locally, and if the file
is not found, the search is repeated recursively on
principal node.

The API is event-driven and built around only one
base class which makes it easily extensible. Derived
classes are expected to override some of the callbacks
(for computing, collecting results, reading/writing). If
there is a desire to implement new feature, another call-
back method can be added to the base class (Listing 1).

struct Micro_kernel {
/// Modify state or create sub-tasks.
void act();
/// Collect results from sub-kernels.
void react(Micro_kernel* sub);
/// I/O
void read(Stream); void write(Stream);
/// Resource binding.
Resource resource();
};

Listing 1. Micro-kernel base class.

4.2. Node Discovery
Node discovery application uses consensus-free

algorithm developed in [19] which distinguishes it
from other similar programmes. The application ranks
nodes in the network according to some static criteria
(the simpliest ranking criteria is based on the position
of the node’s IP address in network IP address range),
it then partitions ranked list of nodes into multiple
hierarchical layers and selects the node with the high-
est rank from the closest layer as the leader. That way
cluster nodes form a subordination tree, topology of
which is changed only when a node leaves or joins the
cluster. The advantage of this algorithm over distrib-
uted consensus algorithms is that it scales well (see
Section 3.3) with the size of the cluster: as the number
of nodes increases more layers are introduced into the
subordination tree thus forming leaders’ framework
that manages the whole cluster.

Multiple levels of subordination are beneficial for a
range of management tasks, especially for resource
monitoring and usage accounting. Typical monitoring
task involves probing each cluster node to determine
its state (offline, online, needs service etc.). Usually
probing is done from one node, and in case of a large
cluster introducing intermediate nodes that collect
data and send it to master, helps distribute the load.
Each level of hierarchy adds another layer of interme-
diate nodes, so the data can be collected efficiently.

5. EVALUATION
The event-driven architecture was tested on the

example of hydrodynamics simulation programme
that solves a real-world problem [4–7]. The problem
consists of generating real ocean wavy surface and
computing pressure under this surface to measure
impact of the external excitations on marine object.
The program is well-balanced in terms of processor
load and for the purpose of evaluation it was imple-
mented with introduced event-driven approach and
the resulting implementation was compared to existing
non event–driven approach in terms of performance
and programming effort.

The event-driven architecture makes it easy to
write logs which in turn can be used to make visualiza-
tion of control f low in a program. Each server main-
tains its own log file and when some event occurs it is
logged in this file accompanied by a time stamp and a
server identifier. Having such files available, it is
straight-forward to reconstruct a sequence of events
occurring during program execution and to establish
connections between these events (to dynamically
draw graph of tasks as they are executed). Such graphs
are used in this section to demonstrate results of exper-
iments.

Generation of wavy surface is implemented as a
transformation of white noise, autoregressive model is
used to generate ocean waves and pressures are com-
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puted using analytical formula. The program consists
of preprocessing phase, main computer-intensive
phase and post-processing phase. The programme
begins with solving Yule–Walker equations to deter-
mine autoregressive coefficients and variance of white
noise. Then white noise is generated and is trans-
formed to a wavy surface. Finally, the surface is
trimmed and written to output stream. Generation of
a wavy surface is the most computer-intensive phase
and consumes over 80% of programme execution time
(Fig. 2) for moderate wavy surface sizes and this time
does not scale with a surface size. So, the program
spends most the time in the main phase generating
wavy surface (this phase is marked with [G0, G1] inter-
val in the graphs). The hardware used in the experi-
ments is listed in Table 2. The program was tested in a
number of experiments and finally compared to other
parallel programming techniques.

5.1. Evaluation for an HPC Application
In the experiment overall performance of the

event-driven approach was tested and it was found to
be superior when solving problems producing large
volumes of data. In the previous research it was found
that OpenMP is the best performing technology for
the wavy ocean surface generation [5], so the experi-
ment consisted of comparing its performance to the

performance of event-driven approach on a set of
input data. A range of sizes of a wavy surface was the
only parameter that was varied among subsequent
program runs. As a result of the experiment, the event-
driven approach was found to have higher perfor-
mance than OpenMP technology and the more the
size of the problem is the bigger performance gap
becomes (Fig. 1). Also event plot in Fig. 2 of the run
with the largest problem size shows that high perfor-
mance is achieved with overlapping of parallel compu-
tation of a wavy surface (interval [G0, G1]) and output
of resulting wavy surface parts to the storage device
(interval [W0, W1]). It can be seen that there is no
such overlap in OpenMP implementation and output
begins at point W0 right after the generation of wavy
surface ends at point G1. In contrast, there is a signif-
icant overlap in event-driven implementation and in
that case wavy surface generation and data output end
almost simultaneously at points G1 and W1 respec-
tively. So, the approach with pipelined execution of
parallelised computational steps achieves better per-
formance than sequential execution of the same steps.

Although OpenMP technology allows constructing
pipelines, it is not easy to combine a pipeline with par-
allel execution of tasks. In fact such combination is
possible if a thread-safe queue is implemented to com-
municate threads generating ocean surface to a thread
writing data to disk. Then using omp section work of
each thread can be implemented. However, imple-
mentation of parallelexecution within omp section
requires support for nesting omp parallel directives.
So, combining pipeline with parallel execution is com-
plicated in OpenMP implementation requiring the use
a thread-safe queue which is not present in OpenMP
standard.

5.2. API Overheads

The experiment consisted of measuring different
types of overheads including profiling, load balancing,
queuing and other overheads so that real performance
of event-driven system can be estimated. In this exper-
iment, the same technique was used to obtain mea-

Fig. 1. Performance comparison of OpenMP and event-
driven implementations.
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Fig. 2. Event plot showing overlap of parallel computation [G0, G1] and data output [W0, W1] in event-driven implementation.
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surements: every function causing overhead was
instrumented and also the total time spent executing
tasks and total program execution time was measured.
As a result, the total overhead was estimated to be less
than 0.1% for different numbers of cores (Table 1).
Also the results showed that reduction time is smaller
than the total time spent solving production tasks in all
cases (Table 1). It is typical of generator programs to
spend more time solving data generating tasks than
solving data processing tasks; in a data-centric pro-
gram specializing in data processing this relation can
be different. Finally, it is evident from the results that
the more cores are present in the system, the more stale
time is introduced into the program. This behaviour is
caused by imbalance between processor performance
and performance of a storage device for this particular
computational problem. So, event-driven system do
not incur much overhead even on systems with large
number of cores.

5.3. Node Discovery Evaluation

Test platform consisted of a multi-processor node,
and Linux network namespaces were used to consoli-
date virtual cluster of varying number of nodes on a
physical node. Similar approach was used in a number
of works [1–3]. The advantage of it is that the tests can
be performed on a single machine, and there is no

need to use physical cluster. Tests were repeated mul-
tiple times to reduce influences of processes running
in background. Each subsequent test run was sepa-
rated from previous one with a delay to give operating
system time to release resources, cleanup files and
flush buffers.

Performance test was designed to compare subor-
dination tree build time for two cases. In the first case
each node performed full network scan to determine
online nodes, choose the leader, and then sent confir-
mation message to it. In the second case each node
used IP mapping to determine the leader without full
network scan, and then sent confirmation message to
it. So, this test measured the effect of using IP map-
ping, and only one leader was chosen for all nodes.

Subordination tree test was designed to check that
resulting trees for different maximal number of subor-
dinate nodes are stable. For that purpose every change
in a tree topology was recorded in a log file, and after
30 seconds every test run was forcibly stopped. The
test was performed for 100–500 nodes. For this test
additional physical nodes were used to accommodate
large number of parallel processes (one node per
100 processes).

Performance test showed that using IP mapping
can speed up subordination tree build time by up to
200% for 40 nodes (Fig. 4), and this number increases
with the number of nodes. This is expected behaviour
since overhead of sending messages to each node is
omitted, and predefined mapping is used to find the
leader. So, our approach is more efficient than a full
scan of a network. The absolute time of this test is
expected to increase when executed on real network,
and thus performance may increase.

Subordination tree test showed that for each num-
ber of nodes stable state can be reached well before
30 seconds (Fig. 5). The absolute time of this test may
increase when executed on real network. Resulting
subordination tree for 11 nodes is presented in Fig. 3.

Table 1. Breakdown of wall clock time for an event-driven
system. Time is shown as a percentage of the total program
execution time. Experiments for 4 cores were conducted on
the System I and experiments for 24 and 48 cores were con-
ducted on the System II from Table 2

Time spent, %

4 cores 24 cores 48 cores

Problem solution 84 37 21
Stale time 16 63 79
Overhead 0.0724 0.0325 0.0225

Table 2. Testbed setup

System I System II

Operating system Debian 3.2.51-1 x86 64 CentOS 6.5 x86 64
File system ext4 ext4
Processor Intel Core 2 Quad Q9650 2 × Intel Xeon E5-2695 v2
Cores frequency, GHz 3.00 2.40
No. of cores 4 24 (48 virtual cores)
RAM capacity, GB 8 256
RAID device Dell PERC H710 Mini
RAID configuration RAID10
Storage device Seagate ST3250318AS 4 × Seagate ST300MM0006
Storage device speed, rpm 7200 2 × 10000
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5.4. Evaluation for a Big Data Problem

The system setup which was used to test the imple-
mentation consisted of commodity hardware (three
nodes with System I configuration in Table 2) and
open-source software (Hadoop), and the evaluation
was divided into two stages. In the first stage Hadoop
was installed on each node of the cluster and was con-
figured to use host file system as a source of data so
that performance of parallel file system used by default
in Hadoop could be factored out from the compari-
son. To make this possible the whole dataset was rep-
licated on each node and placed in the directory with
the same name. In the second stage Hadoop was shut
down and replaced by newly developed middleware
system and dataset directories were statically distrib-
uted to different nodes to nullify the impact of parallel
file system on the performance.

In the test it was found that Hadoop implementa-
tion has low scalability and maximum performance of
approx. 1000 spectra per second and alternative imple-
mentation has higher scalability and maximum perfor-
mance of approx. 7000 spectra per second (Fig. 6).
The source of Hadoop inefficiency was found to be
temporary data files which are written to disk on each
node. These files represent sorted chunks of the
key-value array and are part of implementation of
merge sort algorithm used to distribute the keys to dif-

ferent nodes. For NDBC dataset the total size of these
files exceeds the size of the whole dataset which
appears to be the consequence of Hadoop not com-
pressing intermediate data (the initial dataset has
compression ratio of 1 : 5). So, the sorting algorithm
and inefficient handling of compressed data led to per-
formance degradation and inefficiency of Hadoop for
NDBC dataset.

The sorting is not needed to distribute the keys and
in the alternative implementation directory hierarchy
is used to determine machine for reduction. For each
directory a separate task is created which recursively
creates tasks for each sub-directory and each file. Since
each task can interact with its parent when the reduction
phase is reached reduction tasks are created on the
machines where parents were executed previously.

6. CONCLUSIONS

Apart from being more efficient than OpenMP the
biggest advantage of the event-driven approach is the
ease of parallel programming. First of all, what is
needed from a programmer is to develop a class to
describe each independent task, create objects of that
class and submit them to a queue. Programming in
such a way does not involve thread and lock manage-
ment and the system is f lexible enough to have even

Fig. 3. Resulting subordination tree for 11 nodes.
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the tiniest tasks executed in parallel. Second, relieving
programmer from thread management makes it easy to
debug this system. Each thread maintains its own log
and any of both system and user events can be written to
it and the sequence of events can be restored after the
execution ends. Finally, with event-driven approach it is
easy to write load distribution algorithm for your spe-
cific problem (or use an existing one). The only thing
which is not done automatically is decomposition and
composition of micro-kernels, however, this problem
requires higher layer of abstraction to solve.

For big data applications no redundant sorting nor
any kind of temporary files are used in the implemen-
tation which allows it to scale well and show better per-
formance compared to Hadoop approach.

The future work is to extend event-driven approach
for distributed and hybrid (GPGPU) systems and to
see if it is possible to cover those cases.
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