
Subordination:
Cluster Management without Distributed Consensus

Ivan Gankevich, Yuri Tipikin
Dept. of Computer Modeling and Multiprocessor Systems

Saint Petersburg State University
Saint Petersburg, Russia

igankevich@yandex.com, yuriitipikin@gmail.com

Vladimir Gaiduchok
Dept. of Computer Science and Engineering

Saint Petersburg Electrotechnical University “LETI”
Saint Petersburg, Russia
gvladimiru@gmail.com

POSTER PAPER

Abstract—Nowadays, many cluster management systems rely
on distributed consensus algorithms to elect a leader that
orchestrates subordinate nodes. Contrary to these studies we
propose consensus-free algorithm that arranges cluster nodes
into multiple levels of subordination. The algorithm structures
IP address range of cluster network so that each node has
ranked list of candidates, from which it chooses a leader. The
results show that this approach easily scales to a large number
of nodes due to its asynchronous nature, and enables fast
recovery from node failures as they occur only on one level
of hierarchy. Multiple levels of subordination are useful for
efficiently collecting monitoring and accounting data from large
number of nodes, and for scheduling general-purpose tasks on a
cluster.

Keywords—job scheduling, leader election, cluster monitoring,
cluster accounting, cluster management

I. INTRODUCTION

Many distributed systems rely on a leader that manages
computer cluster and schedules jobs on other nodes. The
leader role can be assigned either statically – to a particular
physical node – or dynamically through election process.
In the first case fault-tolerance is achieved by duplicating
leader functionality on some reserved node which is used as a
substitute in case of current leader failure. In the second case,
fault-tolerance is guaranteed by re-electing failed leader by
survived nodes. Although, dynamic election requires dedicated
distributed algorithm, this approach becomes more and more
popular as it does not require spare nodes to survive leader
failure.

Leader election algorithms (which are sometimes referred to
as distributed consensus algorithms) are special cases of wave
algorithms. In [1] Tel defines them as algorithms in which
termination event is preceded by at least one event occurring
in each parallel process. Wave algorithms are not defined for
anonymous networks, that is they does not apply to processes
that can not uniquely define themselves. However, the number
of processes can be determined in the course of an algorithm.
In distributed system this means that wave algorithms work

for clusters with dynamically changing number of nodes, and
nodes can go online and offline.

Contrary to this, our approach does not use wave algorithms,
and hence does not require communicating with each node in
a cluster to determine a leader. Instead, each node enumerates
all nodes in the network it is part of, and converts this
enumeration to a tree with a user-defined maximal fan-out
value. Then the node determines its level of hierarchy and
tries to communicate with nodes from higher levels to become
subordinate. First, it checks the closest ones and then goes all
the way to the top. If it can not find any top-level node, it
becomes the root node.

Enumeration of all hosts in a network defines strict total
order on a set of cluster nodes. Although, technically any
function can be chosen to map a node to a number, in practise
this function should be sufficiently smooth and may have
infrequent jumps. For example, high-frequency oscillations
(e.g. representing measurement error), may result in rapid
changes in the hierarchy of nodes, which make it useless for
end users. Thus, any such peculiarities should be smoothed in
order to make mapping useful. The ideal mapping function is
a line, which represents static node mapping.

Smoothness of the map function ensures stability of hierar-
chy of nodes and minimises overheads of hierarchy changes.
The simpliest such function is the position of an IP address
in network IP address range: a line which jumps only when
network configuration is changed (which a rare occasion).

So, the main feature of this algorithm is relation of subor-
dination. It makes hierarchy updates local to a particular level
and branch of a hierarchy, and allows precise determining of
the leader of each node.

II. RELATED WORK

One point that distinguishes our approach with respect to
some existing proposals [2]–[4] is that our algorithm elects
multiple leaders thus creating leaders’ framework with mul-
tiple levels of subordination. The topology of this framework

reflects the topology of underlying physical network as mush
as possible, however, if the number of nodes connected to a
single switch is large, additional levels of subordination may
be introduced.

In contrast to many leader election algorithms, our algo-
rithm is not intended to manage updates to some distributed
database. The main application of leader framework is to
distribute workload across large number of luster nodes. Typ-
ically one cluster is managed by one master server (possibly
by two servers to improve fault tolerance), which collects
monitoring and accounting data, issues cluster-wide configura-
tion commands, and launches jobs. When the cluster becomes
large, master server may not cope with the load. In this case,
introducing subordinate servers solves the issue.

The method described in the following sections relies on
node performance and node latency (for geographically dis-
tributed clusters) being stable. Otherwise the method produces
randomly changing framework of leaders which does not allow
to distribute the load efficiently. For local clusters the method
is always stable as the leader is determined by its position in
Internet IP address range which rarely changes.

To summarise, the method described in the following sec-
tions may not be suitable for managing updates to a dis-
tributed database, and for environments where IP addresses
are changed frequently. Its sole purpose is to distribute the
load on the cluster with large number of nodes.

III. METHODS

A. NODE MAPPING

Relation of subordination can be defined as follows. Let N
be the set of cluster nodes connected to a network, then

∀n1∀n2 ∈ N ,∀f : N → Rn

⇒ (f(n1) < f(n2)⇔ ¬(f(n1) ≥ f(n2))),

where f maps a node to a number and operator < defines
strict total order on Rn. Thus, f is the function that defines
node’s rank allowing to compare nodes to each other. and
< is binary relation of subordination which ensures that the
mapping is bijective.

The simpliest function f maps each node to its Internet ad-
dress position in network IP address range. Without conversion
to a tree – when only one leader is allowed in the network – a
node with the lowest position in this range becomes the leader.
If a node occupies the first position in the range, then there
is no leader for it. Although, IP address mapping is simple
to implement, it introduces artificial dependence of the leader
role on the address of a node. Still, it is useful for initial
configuration of a cluster when more complex mappings are
not possible.

The more sophisticated mapping may use performance to
rank nodes in a network. Sometimes it is difficult to determine
performance of a computer: The same computers may show

varying performance for different applications, and the same
applications may show varying performance for different com-
puters. In this work performance is estimated as the number
of jobs completed per unit of time (which makes it dependent
on the type of a workload).

Several nodes may have the same performance, so using
it as function f may violate strict total order. To implement
performance-wise rankings the two mappings can be combined
into a compound one:

f(n) = 〈1/perf(n), ip(n)〉.

Here perf is performance of a node estimated as the number
of jobs completed per unit of time, and ip is the mapping of
a node to its Internet position in network IP address range.
So, with the compound mapping each node is characterised
by both its performance and position in the network address
range. When performance data is available, it supersedes
node’s position in the network for ranking.

For a cluster with linear topology (all computers connected
to a switch) knowing performance is enough to rank nodes,
however, for a distributed system network latency may become
a more important metric. For example, a high-performance
node in a distant cluster may not be the best choice for a
leader if there are some intermediate nodes on the way to
it. Moreover, network latency is a function of at least two
nodes, and using it in the mapping makes it dependent on the
node which produced it. Thus, each node in the cluster has
its own ranked list of candidates, and a node may occupy
a different position in each list. Since, each node has its
own ranked list, multiple leaders are possible within network.
Finally, measuring network latency for each node introduces
substantial overhead which can be minimised with conversion
to a tree (see Section III-B).

Although, putting network latency into the mapping along
with other metrics seems feasible, some works suggest that
programme speedup depends on its ratio to performance.
For example, in [5]–[7] the authors suggest generalisation of
Amdahl’s law formula for computer clusters. The formula

SN =
N

1− α+ αN + βγN3

shows speedup of a parallel programme on a cluster taking into
account communication overhead. Here N is the number of
nodes, α is the parallel portion of a program, β is the diameter
of a system (the maximal number of intermediate nodes a mes-
sage passes through when any two nodes communicate), and γ
is the ratio of node performance to network link performance.
Speedup reaches its maximal value at N = 3

√
(1− α)/(2βγ),

so the higher the link performance is the higher speedup is
achieved. This particular statement ratifies the use of node
performance to network latency ratio in the mapping, so that
final mapping is as the following.

f(n) = 〈lat(n)/perf(n), ip(n)〉,

where lat is measured network latency between the node which
composes ranked list and the current node in the list.

So, putting network latency to the mapping unnecessary
complexifies configuration of local cluster, but can be ben-
eficial for cluster federation. In case of local homogeneous
cluster an IP address mapping should be enough to determine
the leader.

B. SUBORDINATION TREE

To make leader election algorithm scale to a large number
of nodes, enumeration of nodes is converted to a tree. In the
tree each node is uniquely identified by its level l and offset
o, which are computed as follows.

l(n) = blogp nc,
o(n) = n− pl(n),

where n is the position of node’s IP address in network IP
address range, and p is the maximal number of subordinate
nodes. The leader of a node with level l and offset o has level
l − 1 and offset bo/pc. The distance between any two nodes
in the tree with network positions i and j is computed as

〈lsub(l(j), l(i)), |o(j)− o(i)|〉,

lsub(l1, l2) =

{
∞ if l1 ≥ l2,
l1 − l2 otherwise.

The distance is compound to make level dominant.

To determine the leader a node ranks all nodes in the
network according to mapping 〈l(ip(n)), o(ip(n))〉, and using
distance formula chooses the node which is closest to com-
puted leader’s position and has lower position in the ranking.
That way offline nodes are skipped, however, for sparse
networks (i.e. networks with nodes having non-contiguous IP
addresses) perfect tree is not guaranteed.

Ideally the number of messages sent over the network by
a node is constant. It means that when the network is dense
(e.g. there are no offline nodes, and there are no gaps in the IP
addresses), the node communicates with its leader only. Hence,
in contrast to full network scan, our election algorithm scales
well for a large number of nodes (Section).

Level and offset are only useful to build subordination tree
for linear topologies (all computers connected to a switch). For
topologies where links between nodes are not homogeneous,
it can be built by adding network latency into the mapping.
Typically distributed system runs on top of tree physical
topology (i.e. nodes connected to multiple switches), but
geographically distributed clusters may form the topology with
a few cycles. Measuring network latency helps a node to find
a leader which is closest to it in physical topology. So, the
algorithm for linear and non-linear topologies differs only in
the mapping.

In the second phase of the algorithm – when a node
has found its leader – a node measures network latency for

subordinates of this leader and its own leader. So, only p
nodes are probed by each node, but if the node changes its
leader, the process repeats. It is difficult to estimate the total
number of repetitions for a given topology as it depends on
the IP addresses of the nodes, so there is no guarantee that
the number will be smaller than for probing each node in the
network.

The main goal of this algorithm is to minimise the number
of packets transmitted over network per unit of time when
finding the leader and the number of nodes is unknown,
rather than maximising performance. Since changes in network
topology are infrequent, the algorithm needs to be run only on
initial cluster installation, and the resulting hierarchy of nodes
can be saved to persistent storage for later retrieval in case of
node restart.

So, for a distributed system subordination tree shape is
close to that of physical topology, and for cluster with a
switch the shape is determined by the maximal number of
subordinates p a node can have. The goal of this tree is to
optimise performance of cluster management tasks, which are
discussed in Section V.

C. EVALUATION ON VIRTUAL NETWORK

Test platform consisted of a multi-processor node, and
Linux network namespaces were used to consolidate virtual
cluster of varying number of nodes on a physical node.
Similar approach was used in a number of works [8]–[10]. The
advantage of it is that the tests can be performed on a single
machine, and there is no need to use physical cluster. Tests
were repeated multiple times to reduce influences of processes
running in background. Each subsequent test run was separated
from previous one with a delay to give operating system time
to release resources, cleanup files and flush buffers.

Performance test was designed to compare subordination
tree build time for two cases. In the first case each node
performed full network scan to determine online nodes, choose
the leader, and then sent confirmation message to it. In the
second case each node used IP mapping to determine the
leader without full network scan, and then sent confirmation
message to it. So, this test measured the effect of using IP
mapping, and only one leader was chosen for all nodes.

Subordination tree test was designed to check that resulting
trees for different maximal number of subordinate nodes are
stable. For that purpose every change in a tree topology was
recorded in a log file, and after 30 seconds every test run
was forcibly stopped. The test was performed for 100-500
nodes. For this test additional physical nodes were used to
accommodate large number of parallel processes (one node
per 100 processes).

IV. RESULTS

Performance test showed that using IP mapping can speed
up subordination tree build time by up to 200% for 40

nodes (Fig. 2), and this number increases with the number of
nodes. This is expected behaviour since overhead of sending
messages to each node is omitted, and predefined mapping
is used to find the leader. So, our approach is more efficient
than full scan of a network. The absolute time of this test is
expected to increase when executed on real network, and thus
performance may increase.

Subordination tree test showed that for each number of
nodes stable state can be reached well before 30 seconds
(Figure 3). The absolute time of this test may increase when
executed on real network. Resulting subordination tree for 11
nodes is presented in Fig. 1.

V. DISCUSSION

Multiple levels of subordination are beneficial for a range
of management tasks, especially for resource monitoring and
usage accounting. Typical monitoring task involves probing
each cluster node to determine its state (offline or online,
needs service etc.). Usually probing is done from one node,
and in case of a large cluster introducing intermediate nodes to
collect data and send it to master helps distribute the load. In
subordination tree each level of hierarchy adds another layer
of intermediate nodes, so the data can be collected efficiently.

The same data collection (or distribution) pattern occurs
when retrieving accounting data, and in distributed configu-
ration systems, when configuration files need to be distributed
across all cluster nodes. Subordination trees cover all these
use cases.

VI. CONCLUSION

Preliminary tests showed that multiple level of subordina-
tion can be easily built for different number of nodes with fast
IP mapping. The approach is more efficient than full scan of a
network. Resulting subordination tree can optimise a range of
typical cluster management tasks. Future work is to test how
latency-based mapping works for geographically distributed
systems.

ACKNOWLEDGEMENTS

The research was carried out using computational resources
of Resource Centre “Computational Centre of Saint Peters-
burg State University” (T-EDGE96 HPC-0011828-001) within
frameworks of grants of Russian Foundation for Basic Re-
search (project no. 13-07-00747) and Saint Petersburg State
University (projects no. 9.38.674.2013 and 0.37.155.2014).

REFERENCES

[1] G. Tel, Introduction to distributed algorithms. Cambridge University
press, 2000.

[2] J. Brunekreef, J.-P. Katoen, R. Koymans, and S. Mauw, “Design and
analysis of dynamic leader election protocols in broadcast networks,”
Distributed Computing, vol. 9, no. 4, pp. 157–171, 1996.

[3] M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and S. Toueg, “Stable
leader election,” in Distributed Computing. Springer, 2001, pp. 108–
122.

127.0.0.1

127.0.0.2

127.0.0.3

127.0.0.4
127.0.0.5

127.0.0.6
127.0.0.7

127.0.0.8

127.0.0.9

127.0.0.10

127.0.0.11

Figure 1. Resulting subordination tree for 11 nodes.

0

1

2

3

4

5

2 8 16 24 32 40 48

T
im

e
 [

s
]

No. of nodes

Full scan
IP mapping

Figure 2. Time needed to build initial subordination tree with full scan of
each IP address in the network and with IP mapping.

[4] P. Romano and F. Quaglia, “Design and evaluation of a parallel in-
vocation protocol for transactional applications over the web,” IEEE
Transactions on Computers, vol. 63, no. 2, pp. 317–334, 2014.

[5] A. Degtyarev, “High performance computer technologies in shipbuild-
ing,” in OPTIMISTIC — optimization in marine design, Mensch & Buch
Verlag, Berlin, L. Birk and S. Harries, Eds., 2003.

[6] I. Soshmina and A. Bogdanov, “Using GRID technologies for compu-
tations (in russian),” Saint Petersburg State University Bulletin (Physics
and Chemistry), vol. 3, pp. 130–137, 2007.

[7] S. Andrianov and A. Degtyarev, Parallel and distributed computations
(in Russian). Saint Petersburg State University, 2007.

[8] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid
prototyping for software-defined networks,” in Proceedings of the 9th

ACM SIGCOMM Workshop on Hot Topics in Networks. ACM, 2010,
p. 19.

[9] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown,
“Reproducible network experiments using container-based emulation,”
in Proceedings of the 8th international conference on Emerging net-
working experiments and technologies. ACM, 2012, pp. 253–264.

[10] B. Heller, “Reproducible network research with high-fidelity emulation,”
Ph.D. dissertation, Stanford University, 2013.

0

1

2

3

4

100 200 300 400

T
im

e
 [

s
]

No. of nodes

Figure 3. Time needed to reach stable subordination tree state for large
number of nodes.

