
Factory:
Non-stop Batch Jobs without Checkpointing

Ivan Gankevich, Yuri Tipikin, Vladimir Korkhov
Dept. of Computer Modeling and Multiprocessor Systems

Saint Petersburg State University
Saint Petersburg, Russia

i.gankevich@spbu.ru, y.tipikin@spbu.ru, v.korkhov@spbu.ru

Vladimir Gaiduchok
Dept. of Computer Science and Engineering

Saint Petersburg Electrotechnical University “LETI”
Saint Petersburg, Russia
gvladimiru@gmail.com

POSTER PAPER

Abstract—Nowadays many job schedulers rely on checkpoint
mechanisms to make long-running batch jobs resilient to node
failures. At large scale stopping a job and creating its image
consumes considerable amount of time. The aim of this study is to
propose a method that eliminates this overhead. For this purpose
we decompose a problem being solved into computational micro-
kernels which have strict hierarchical dependence on each other.
When a kernel abruptly stops its execution due to a node failure,
it is responsibility of its principal to restart computation on
a healthy node. In the course of experiments we successfully
applied this method to make hydrodynamics HPC application
run on constantly changing number of nodes. We believe, that
this technique can be generalised to other types of scientific
applications as well.

Keywords—job scheduling, parallel computing, cluster com-
puting, distributed computing, fault tolerance

I. INTRODUCTION

There are three types of node failures that may occur
in computer cluster—failure of a subordinate node, failure
of a master node and an unplanned electricity outage—and
each type of failure is handled differently. The usual way of
handling a failure of a subordinate is to periodically checkpoint
each long-running parallel job, i.e. temporarily suspend it,
dump its memory image to some stable storage, and resume
it on healthy nodes upon a failure. To handle a failure of a
master node usually means to continuously replicate its state
to a backup node which takes master’s role upon a failure.
Similarly, to overcome an unplanned outage the state of a
master node can be replicated to geographically distant backup
node connected to another cluster, but the execution state of
all jobs would probably be lost.

Considerable effort is being put to make dumping job’s
memory image to disk less costly [?], and approaches alter-
native to checkpoint-based fault tolerance are not attracting
much attention in this area. Why does this happen? Usually
HPC applications use message passing for communication of
parallel processes and store their state in global memory space,
and there is no way one can restart a failed process from

its current state without writing the whole memory image to
disk. Usually the total number of processes is fixed by the
job scheduler, and all parallel processes restart upon a failure.
There is ongoing effort to make it possible to restart only the
failed process [?] at a cost of overloading a healthy node or
maintaining a number of spare nodes. Although, it would be
more practical to proceed execution of a failed application
in degraded state (without failed node), the message passing
library does not allow to change the number of processes at
runtime, and most programmes use this number to distribute
the load. So, there is no practical way to implement fault
tolerance in message passing library other than restarting
all parallel processes from a checkpoint or restarting failed
process on a spare healthy node.

There is, however, a possibility to implement fault tolerance
to continue execution of a job on lesser number of nodes than
it was initially requested. In this case the load is dynamically
redistributed among available nodes. Although, dynamic load
balancing was implemented in a number of projects [?], [?]
based on message passing library, it was not used to implement
fault tolerance.

We do not deal with failure detection in this work, and
conservatively assume that a node fails when the correspond-
ing network connection prematurely closes. This allows us to
concentrate on the logic of fail over, which can be possibly
incorporated into any existing framework of failure detection
or vice versa.

In this paper we deal with failures of subordinate and
master nodes and give a hint on how an unplanned outage
can be handled without loosing much of the execution state
of jobs. We show how to use well-established object-oriented
programming techniques to store execution state in a hierarchy
of objects rather than in hard-to-manage global and local
variables. Finally, we show how to implement fault tolerance
on top of the message passing library with some restrictions
on process restarts.



II. METHODS

A. HIERARCHY OF NODES

This work is based on the results of previous research: In [?]
we developed an algorithm that allows to build a tree hierarchy
from strictly ordered set of cluster nodes. The sole purpose
of this hierarchy is to make a cluster more fault-tolerant by
introducing multiple master nodes. If a master node fails, then
its subordinates try to connect to another node from the same
or higher level of the hierarchy. If there is no such node, one
of the subordinates becomes the master.

A position of a node in a hierarchy is determined by
mapping its IP address position in a network to its layer and
offset in a tree hierarchy. The number of layers is controlled
by a fan-out value. As nodes’ IP addresses change infrequently
this mapping is mostly static, and affected only by node
failures. Thus with help of tree hierarchy we can precisely
determine IP address of a master node without resorting to
costly leader election algorithms which are commonly used
for this purpose.

We use this hierarchy to perform load balancing across
neighbouring cluster nodes (nodes that are adjacent in the
hierarchy), i.e. if the job is launched on a subordinate node
its principal node also receives a fraction of the load. This
rule makes the system symmetric: Each node runs the same
software and it is easy to switch from a failed master node to a
backup node, it is just a matter of changing node’s role. Similar
design choice is applied in distributed key-value stores [?], [?]
to handle failure of a master node, but we have no knowledge
of job schedulers that use this to distribute the load on the
cluster with multiple master nodes.

B. HIERARCHY OF COMPUTATIONAL KERNELS

Each programme that runs on top of the tree hierarchy
is composed of computational kernels—objects that contain
data and code to process it. To exploit parallelism a kernel
may create arbitrary number of subordinate kernels which
are automatically spread first across available processor cores,
second across subordinate nodes in the tree hierarchy. The
programme is itself a kernel (without a parent as it is executed
by a user), which either solves the problem sequentially on its
own or creates subordinate kernels to solve it in parallel.

Unlike main function in programmes based on message
passing library, the first computational kernel is initially run
only on one node, and remote nodes are used only when the
local queue is overflown by kernels. This design choice allows
to have arbitrary number of nodes throughout execution of a
programme, and take more nodes for highly parallel parts of
the code. Somewhat similar choice was made in the design of
MapReduce framework [?], [?]—a user submitting a job does
not specify the number of hosts to run its job on, and effective
hosts are the hosts where input files are located.

From mathematical point of view kernel K can be described
as a vector-valued functional which recursively maps a kernel

to n-component vector of kernels:

K(f) : K→ Kn Kn = {f : K→ Kn} .

Dummy kernel O : K → K0, which stops recursion, is used
to call the first kernel and finish execution of the programme.
An argument to each kernel is interpreted using the following
rules.

1) If a kernel is a new kernel, then its argument is its parent
kernel.

2) If a kernel is a parent of the kernel that produced it
or some other existing kernel, then the argument is the
kernel that produced it.

Engine that executes kernels is implemented as a simple
loop. It starts with calling the first kernel with a dummy kernel
as an argument, then calls each kernel that was produced by
this call and so forth. The loop finishes when a dummy kernel
is returned as a result of the call.

Since kernel call may return multiple kernels they are
executed in parallel. Parallel execution quickly produces a
pool of kernels which permit execution in an unspecified order.
Several threads concurrently retrieve kernels from the pool and
may “spill” remaining kernels to neighbouring cluster nodes.

Kernels are implemented as closures—function objects con-
taining all their arguments, a reference to parent kernel and
user-supplied data. The data is either processed upon kernel
call, or subordinate kernels are created to process it in parallel.
When the processing is complete a parent kernel closure with
its subordinate kernel as an argument is called to collect data
from it.

C. HANDLING SINGLE NODE FAILURES

Basic strategy to overcome a failure of a subordinate node
is to restart corresponding kernels on healthy node—a strategy
employed in Erlang language to restart failed subordinate
processes [?]. To implement this we record every kernel that is
sent to remote cluster nodes, and in an event of a node failure
these kernels are simply rescheduled to other subordinate
nodes with no special handling from a programmer. If there
are no nodes to sent kernels to, they are scheduled locally.
So, in contrast to heavy-weight checkpoint/restart machinery,
tree hierarchy allows automatic and transparent handling of
subordinate node failures without restarting parallel processes
on every node.

A possible way of handling a failure of a node where the
first kernel is located is to replicate this kernel to a backup
node, and make all updates to its state propagate to the
backup node by means of a distributed transaction. However,
this approach does not play well with asynchronous nature
of computational kernels. Fortunately, the first kernel usually
does not perform operations in parallel, it is rather sequentially
launches execution steps one by one, so it has only one
subordinate at a time. Keeping this in mind, we can simplify
synchronisation of its state: we can send the first kernel along



with its subordinate to the subordinate node. When the node
with the first kernel fails, its copy receives its subordinate,
and no execution time is lost. When the node with its copy
fails, its subordinate is rescheduled on some other node, and
a whole step of computation is lost in the worst case.

Described approach works only for kernels that do not have
a parent and have only one subordinate at a time, which means
that they act as optimised checkpoints. The advantage is that
they save results after each sequential step, when memory
footprint of a programme is low, they save only relevant data,
and they use memory of a subordinate node instead of stable
storage.

D. HANDLING OUTAGES

Electricity outage is a serious failure, so if there is no other
geographically distant cluster that can share the load, then the
only choice is to hope that no important data is lost and restart
every batch job after full site recovery. To reduce restart time
the first kernel of each job may save its state (which is small
compared to the full state of a job) to some stable storage.
Such scenario complicates design of a distributed system so it
was not considered in this paper.

E. IMPLEMENTATION

For efficiency reasons fault tolerance techniques described
above are implemented in the C++ framework: From the
authors’ perspective C language is deemed low-level for
distributed programmes, and Java incurs too much overhead
and is not popular in HPC community. To use the framework
without a job scheduler, we need to implement a daemon that
maintains the state of the hierarchy of nodes and exposes API
to interact with it. As of now, the framework runs in the same
process as an parallel application that uses it. The framework
is called Factory, it is now in proof-of-concept development
stage.

III. RESULTS

Factory framework is evaluated on physical cluster (Table I)
on the example of hydrodynamics HPC application which was
developed in [?], [?], [?], [?]. This programme generates wavy
ocean surface using ARMA model, its output is a set of files
representing different parts of the realisation. From a computer
scientist point of view the application consists of a series of
filters, each applying to the result of the previous one. Some
of the filters are parallel, so the programme is written as a
sequence of big steps and some steps are made internally
parallel to get better performance. In the programme only
the most compute-intensive step (the surface generation) is
executed in parallel across all cluster nodes, and other steps
are executed in parallel across all cores of the master node.

The application was rewritten for the new version of the
framework which required only slight modifications to handle
failure of a node with the first kernel: The kernel was flagged

TABLE I
TEST PLATFORM CONFIGURATION.

CPU Intel Xeon E5440, 2.83GHz
RAM 4Gb
HDD ST3250310NS, 7200rpm
No. of nodes 12
No. of CPU cores per node 8

so that the framework makes a replica and sends it to some
subordinate node. There were no additional code changes other
than modifying some parts to match the new API. So, the
tree hierarchy of kernels is mostly non-intrusive model for
providing fault tolerance which demands explicit marking of
replicated kernels.

In a series of experiments we benchmarked performance
of the new version of the application in the presence of
different types of failures (numbers correspond to the graphs
in Figure 1):

1) no failures,
2) failure of a slave node (a node where a part of wavy

surface is generated),
3) failure of a master node (a node where the first kernel is

run),
4) failure of a backup node (a node where a copy of the first

kernel is stored).

A tree hierarchy with fan-out value of 64 was chosen to make
all cluster nodes connect directly to the first one. In each run
the first kernel was launched on a different node to make
mapping of kernel hierarchy to the tree hierarchy optimal. A
victim node was made offline after a fixed amount of time after
the programme start which is equivalent approximately to 1/3
of the total run time without failures on a single node. All
relevant parameters are summarised in Table II (here “root”
and “leaf” refer to a node in the tree hierarchy). The results
of these runs were compared to the run without node failures
(Figures 1-2).

There is considerable difference in net performance for
different types of failures. Graphs 2 and 3 in Figure 1 show
that performance in case of master or slave node failure is
the same. In case of master node failure a backup node stores
a copy of the first kernel and uses this copy when it fails
to connect to the master node. In case of slave node failure,
the master node redistributes the load across remaining slave
nodes. In both cases execution state is not lost and no time
is spent to restore it, that is why performance is the same.
Graph 4 in Figure 1 shows that performance in case of a
backup node failure is much lower. It happens because master
node stores only the current step of the computation plus some
additional fixed amount of data, whereas a backup node not
only stores the copy of this information but executes this step
in parallel with other subordinate nodes. So, when a backup
node fails, the master node executes the whole step once again
on arbitrarily chosen healthy node.



TABLE II
BENCHMARK PARAMETERS.

Experiment no. Master node Victim node Time to offline, s

1 root
2 root leaf 10
3 leaf leaf 10
4 leaf root 10

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10 11 12

T
im

e,
 s

Initial no. of nodes

1. No failures

2. Slave node failure

3. Master node failure

4. Backup node failure

Figure 1. Performance of hydrodynamics HPC application in the presence
of node failures.

Finally, to measure how much time is lost due to a failure
we divide the total execution time with a failure by the total
execution time without the failure but with the number of
nodes minus one. The results for this calculation are obtained
from the same benchmark and are presented in Figure 2.
The difference in performance in case of master and slave
node failures lies within 5% margin, and in case of backup
node failure within 50% margin for the number of node less
than 6a. Increase in execution time of 50% is more than 1/3 of
execution time after which a failure occurs, but backup node
failure need some time to be discovered: they are detected
only when subordinate kernel carrying the copy of the first
kernel finishes its execution and tries to reach its parent. Instant
detection requires abrupt stopping of the subordinate kernel
which may be undesirable for programmes with complicated
logic.

To summarise, the benchmark showed that no matter a
master or a slave node fails, the resulting performance roughly
equals to the one without failures with the number of nodes
minus one, however, when a backup node fails performance
penalty is much higher.

IV. DISCUSSION

The benchmark from the previous section show that it is
essential for a parallel application to have multiple sequential
steps to make it resilient to cluster node failures. Although,

aMeasuring this margin for higher number of nodes does not make sense
since time before failure is greater than total execution time with these
numbers of nodes, and programme’s execution finishes before a failure occurs.

1.5

0

1

2

3

2 3 4 5

P
er

fo
rm

an
ce

 r
at

io

Initial no. of nodes

2. Slave node failure

3. Master node failure

4. Backup node failure

Figure 2. Slowdown of the hydrodynamics HPC application in the presence
of different types of node failures compared to execution without failures but
with the number of nodes minus one.

the probability of a master node failure is lower than the
probability of failure of any of the slave nodes, it does not
justify loosing all the data when the programme run is near
completion. In general, the more sequential steps one has in
an HPC application the less is performance penalty in an event
of master node failure, and the more parallel parts each step
has the less is performance penalty in case of a slave node
failure. In other words, the more scalable an application is
the more resilient to node failures it becomes.

In our experiments we specified manually where the pro-
gramme starts its execution to make mapping of hierarchy
of computational kernels to tree hierarchy of nodes optimal,
however, it does not seem practical for real-world cluster.
The framework may perform such tasks automatically, and
distribute the load efficiently no matter whether the master
node of the application is located in the root or leaf of the
tree hierarchy: Allocating the same node for the first kernel of
each application deteriorates fault-tolerance.

Although it may not be clear from the benchmarks, Factory
does not only provide tolerance to node failures: new nodes
automatically join the cluster and receive their portion of the
load as soon as it is possible. This is trivial process as it does
not involve restarting failed kernels or managing their state,
so it is not presented in this work.

In theory, hierarchy-based fault-tolerance can be imple-
mented on top of the message-passing library without loss
of generality. Although it would be complicated to reuse free
nodes instead of failed ones, as the number of nodes is often
fixed in such libraries, allocating reasonably large number
of nodes for the application would be enough to make it
fault-tolerant. However, implementing hierarchy-based fault-
tolerance “below” message-passing library does not seem ben-
eficial, because it would require saving the state of a parallel
application which equals to the total amount of memory it
ccupies on each host, which would not make it more efficient
than checkpoints.



The weak point of the proposed technology is the length of
the period of time starting from a failure of master node up
to the moment when the failure is detected, the first kernel is
restored and new subordinate kernel with the parent’s copy is
received by a subordinate node. If during this period of time
backup node fails, execution state of application is completely
lost, and there is no way to recover it other than fully restarting
the application. The length of the dangerous period can be
minimised but the possibility of a abrupt programme stop
can not be fully eliminated. This result is consistent with the
scrutiny of “impossibility theory”, in the framework of which
it is proved the impossibility of the distributed consensus
with one faulty process [?] and impossibility of reliable
communication in the presence of node failures [?].

V. RELATED WORK

In [?] the author describes master-slave programming model
suitable for dynamic load balancing. In the framework of this
model multiple master nodes arranged in a ring are used to
distribute the load on other nodes, the state of the master
nodes is synchronised by sending work queue across the ring.
Although, this model does not provide fault tolerance, from
computational point of view it is similar to our tree hierarchy
of nodes with an infinite maximal fan-out value. So, tree
hierarchy can be seen as a generalisation of master-slave model
for arbitrary number of levels.

In [?] the author describes popular fault tolerance ap-
proaches employed in cloud computing, with load balancing
using highly-available proxy server being the most popular
one. The author mentions the time to recover from the failure
of a single node being several milliseconds. Although, this re-
sult was obtained in non-HPC domain, it somewhat correlates
with our findings that performance of a parallel application
with a slave node failure roughly equals the time without
failures and without this node participating in computations.

In [?] the author compares various checkpoint/restart im-
plementations used in HPC. The author mentions that one of
the drawbacks of checkpoint/restart mechanism is that it is not
portable, e.g. neither every checkpoint/restart implementation
supports restoring network socket state, nor it is fully com-
patible with every operating system kernel version. Although,
application level fault tolerance—the one that is provided by
tree hierarchy—does not have any of these disadvantages,
it cannot provide fault tolerance to existing message-passing
based parallel programmes. So, there are different trade-offs
for different technologies.

In [?] the author describes an optimised checkpointing
algorithm for send-deterministic MPI applications. In a series
of tests they show that the algorithm reduces the number of
parallel processes that are required to restart from a checkpoint
by half. It is achieved by carefully tracking causal dependen-
cies between messages sent by every process and grouping
messages by epochs—a sequential steps of programme execu-
tion. The algorithm looks promising, but still requires creating

checkpoints for each process.

VI. CONCLUSION

Proposed master node fault-tolerance approach works only
for kernels that do not have a parent and have only one
subordinate at a time, which is act similar to how manually
triggered checkpoints function. The advantage is that they

• save results after each sequential step when memory
footprint of a programme is low so that they save only
relevant data,

• and they use memory of a subordinate node instead of
stable storage.

This allows them to be much faster than traditional checkpoints
at a cost of using small amount of memory of subordinate node
to store execution state of a sequential step of the programme.

Although, after a failure of backup node it takes more time
to recover present execution state, it is not dangerous requiring
only simple restart. At the same time a failure of master
node may lead to a full programme stop, if backup node fails
before master node recovery completes. One of the way to
mitigate this is to make multiple copies of the first kernel
and send them synchronously to different subordinate nodes.
This approach requires some complicated logic to recover from
master node failure, but may increase the number of nodes that
may simultaneously fail. This is one of the directions of future
research work.

Hierarchical dependence between computational kernels
coupled with tree hierarchy of nodes simplifies implementation
of application level fault-tolerance. Provided with a reasonably
large amount of nodes, an application can survive failure
of any node during a single programme run. So, the other
direction of future work is to “daemonise” the framework to
make it possible to benchmark multiple applications on the
same cluster.

ACKNOWLEDGEMENTS

The research was carried out using computational re-
sources of Resource Centre “Computational Centre of Saint
Petersburg State University” (T-EDGE96 HPC-0011828-001)
within frameworks of grants of Russian Foundation for Ba-
sic Research (projects no. 16-07-01111, 16-07-00886, 16-
07-01113) and Saint Petersburg State University (project no.
0.37.155.2014).

REFERENCES

[1] I. P. Egwutuoha, D. Levy, B. Selic, and S. Chen, “A survey of
fault tolerance mechanisms and checkpoint/restart implementations for
high performance computing systems,” The Journal of Supercomputing,
vol. 65, no. 3, pp. 1302–1326, 2013.

[2] H. Meyer, D. Rexachs, and E. Luque, “Radic: A faulttolerant middle-
ware with automatic management of spare nodes*,” in Proceedings of
the International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA). The Steering Committee of
The World Congress in Computer Science, Computer Engineering and
Applied Computing (WorldComp), 2012, p. 1.



[3] M. Bhandarkar, L. V. Kalé, E. de Sturler, and J. Hoeflinger, “Adaptive
load balancing for mpi programs,” in Computational Science-ICCS 2001.
Springer, 2001, pp. 108–117.

[4] E. L. Lusk, S. C. Pieper, R. M. Butler et al., “More scalability, less
pain: A simple programming model and its implementation for extreme
computing,” SciDAC Review, vol. 17, no. 1, pp. 30–37, 2010.

[5] I. Gankevich, Y. Tipikin, and V. Gaiduchok, “Subordination: Cluster
management without distributed consensus,” in International Conference
on High Performance Computing & Simulation (HPCS). IEEE, 2015,
pp. 639–642.

[6] J. C. Anderson, J. Lehnardt, and N. Slater, CouchDB: The definitive
guide. O’Reilly Media, Inc., 2010.

[7] A. Lakshman and P. Malik, “Cassandra: A decentralized structured
storage system,” ACM SIGOPS Operating Systems Review, vol. 44, no. 2,
pp. 35–40, 2010.

[8] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[9] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth et al., “Apache hadoop
yarn: Yet another resource negotiator,” in Proceedings of the 4th annual
Symposium on Cloud Computing. ACM, 2013, p. 5.

[10] J. Armstrong, “Making reliable distributed systems in the presence of
software errors,” Ph.D. dissertation, The Royal Institute of Technology
Stockholm, Sweden, 2003.

[11] A. Degtyarev and I. Gankevich, “Evaluation of hydrodynamic pressures
for autoregression model of irregular waves,” in Proceedings of 11th

International Conference “Stability of Ships and Ocean Vehicles”,
Athens, 2012, pp. 841–852.

[12] ——, “Wave surface generation using OpenCL, OpenMP and MPI,”
in Proceedings of 8th International Conference “Computer Science &
Information Technologies”, 2011, pp. 248–251.

[13] A. Degtyarev and A. Reed, “Modelling of incident waves near the ship’s
hull (application of autoregressive approach in problems of simulation
of rough seas),” in Proceedings of the 12th International Ship Stability
Workshop, 2011.

[14] ——, “Synoptic and short-term modeling of ocean waves,” in Proceed-
ings of 29th Symposium on Naval Hydrodynamics, 2012.

[15] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of
distributed consensus with one faulty process,” Journal of the ACM
(JACM), vol. 32, no. 2, pp. 374–382, 1985.

[16] A. Fekete, N. Lynch, Y. Mansour, and J. Spinelli, “The impossibility of
implementing reliable communication in the face of crashes,” Journal
of the ACM (JACM), vol. 40, no. 5, pp. 1087–1107, 1993.

[17] A. Bala and I. Chana, “Fault tolerance-challenges, techniques and
implementation in cloud computing,” IJCSI International Journal of
Computer Science Issues, vol. 9, no. 1, pp. 1694–0814, 2012.

[18] A. Guermouche, T. Ropars, E. Brunet, M. Snir, and F. Cappello, “Un-
coordinated checkpointing without domino effect for send-deterministic
mpi applications,” in Parallel & Distributed Processing Symposium
(IPDPS), 2011 IEEE International. IEEE, 2011, pp. 989–1000.


