
Speedup of deep neural network learning on the
MIC-architecture

Evgeniia Milova, Svetlana Sveshnikova, Ivan Gankevich
Dept. of Computer Modeling and Multiprocessor Systems

Saint Petersburg State University
Saint Petersburg, Russia

milova evg@mail.ru, svetasvesh@yandex.ru, i.gankevich@spbu.ru

POSTER PAPER

Abstract—Deep neural networks are more accurate, but re-
quire more computational power in the learning process. More-
over, it is an iterative process. The goal of the research is to
investigate efficiency of solving this problem on MIC archi-
tecture without changing baseline algorithm. Well-known code
vectorization and parallelization methods are used to increase
the effectiveness of the program on MIC architecture. In the
course of the experiments we test two coprocessor data transfer
models: explicit and implicit one. We show that implicit memory
copying is more efficient than explicit one, because only modified
memory blocks are copied. MIC architecture shows competitive
performance compared to multi-core x86 processor.

Keywords—DNN, optimisation, parallel computing, vectoriza-
tion, offload, Xeon Phi, coprocessor, many-core architecture

I. INTRODUCTION

A perceptron that features more than one hidden (learning)
layer is called a Deep Learning Network. To train this network
the method of backpropagation is usually employed, which is
an iterative gradient algorithm, used for minimizing the errors
of neural network learning.

An algorithm iteration consists of three main step functions:
dnnForward puts a training sample through the network,
yielding a certain result; dnnBackward determines the error,
then, in each layer of the network, starting with the penulti-
mate, calculates the correction of weight coefficients for each
node; dnnUpdate updates the weight of neurons according
to a previously calculated adjustment. Network learning ends
when an error reaches its specified minimum accepted level.
Such network demonstrates remarkable results in many areas,
including those of voice and image recognition. However its
deficiency is in a very lengthy learning process. Therefore,
it has been decided to investigate the issue of effective
functioning of this type of networks on parallel computational
architectures. For testing purposes an 8-layered neural network
was taken (1 input, 6 hidden, 1 output). In the interest of result
analysis the following parameters were chosen: neural network
learning speed and precision of object recognition.

The task was carried out on the Intel Xeon processor
(see Table I for specifications). First, the task was carried

out employing only one core. Then the code optimization
was carried out to prepare for the launch on the parallel
architecture. The decision was made to test the effectiveness
of Many Integrated Core (MIC) architecture [?] in light of
finding the solution to the task. This architecture features a
large number of x86 cores in one co-processor, coupled with
the main processor. Intel Xeon Phi co-processor specifications
are also shown in Table I.

TABLE I
COMPUTATIONAL PLATFORM SPECIFICATIONS.

Processor 2xIntel Xeon CPU E5-2695 v2 (12 cores, 2 streams
by core, 2.40 Ghz)

Coprocessor Intel Xeon Phi-5110P (60 cores, 4 streams by core,
1.052 Ghz)

II. RELATED WORK

In [?] Geoffrey Hinton and Ruslan Salakhutdinov described
deep neural network training algorithms making deep learning
a new direction of research in the field of neural networks.
The idea of deep learning is based on biological peculiarities
of how human brain work. In essence, deep neural network is
a perceptron with more than one hidden layer. An algorithm of
error back-propagation is employed to train such neural net-
work [?]. This algorithm represents iterative gradient descent
which minimises training error [?].

There are a number of articles that describe how to speed
up learning process. In [?], [?], [?] the speed up performed
by increasing the number of cores that are running the neural
network compared with the work of one core there was a
significant speedup. Besides, there are other ways to increase
the speed, such as vectorization.

In [?], [?] the author analyzes the effect of vectorization to
the speed up, and it is shown that the set of parallelization and
vectorization can also give a performance boost.



III. METHODS

A. Parallel architecture code optimization

Each Intel Xeon processor core and Intel Xeon Phi copro-
cessor core contains a vector processing unit. It is possible to
process 16 32-bit integers or 8 64-bit integers in a single pro-
cessor cycle. The code vectorization during array processing
yields a significant potential for program acceleration when
launching on parallel architectures. Vectorization was carried
out by the technology of Array Notation extension Intel Cilk
Plus. Intel Cilk Plus is a C/C++ extension for parallel support,
implemented in the Intel compiler.

For working with the array the following construc-
tion is used instead of cycle for in Array Notation:
array[start_index : length]. For example, the fol-
lowing code adds ith element of W array to each ith element
of Wdelta array

W[0:count] += Wdelta[0:count];

With Array Notation it is possible to vectorize an execu-
tion of more complicated operations. The search of max-
imum element in array is performed using the expression
__sec_reduce_max

const float max =
__sec_reduce_max(in_vec[base:ncols]);

Summing the elements of the array performed by expression
__sec_reduce_add

const float sumexp =
__sec_reduce_add(in_vec[base:ncols]);

After vectorization, the code was launched on the processor
Intel Xeon on 12 cores (24 threads). Performance increased by
14.5 times, compared to launching the non-vectorized code on
one core.

B. Porting the code on MIC architecture

An offload-model of data transfer was used for working with
Intel Xeon Phi. In offload mode the code block highlighted
by the directive #pragma offload target (mic) is
executed on the coprocessor, the rest of the code is executed
on the main processor. The size of the coprocessor memory
for each variable must be specified. Offload mode supports 2
data transfer models: explicit and implicit.

1) Explicit data transfer model: By using the explicit
model, a programmer specifies which variables should be
copied onto coprocessor. The copy destination is also speci-
fied. The advantage of this model is the possibility of success-
ful code compilation by any compiler besides Intel Compiler.
Unknown directives will be simply ignored, generating no
errors, the code will be compiled and ready for work on x86
architecture only.

The functions of neural network learning are called within
two nested loops. Inner loop was marked for execution on the
coprocessor.

while (FetchOneChunk(cpuArg, chunk)) {
...
#pragma offload target (mic:0)
while (FetchOneBunch(chunk, bunch)) {

dnnForward (bunch);
dnnBackward(bunch);
dnnUpdate (bunch);

}
}

One problem that we faced during optimization was that
there is no simple way to transfer two-dimensional arrays
to MIC and back. All in all, we managed to do this with
help of preprocessor macros and careful calculation of array
sizes from source code analysis. Unfortunately, an explicit data
transfer model contains a drawback: It supports a bitwise data
copy only, and a structure containing field-pointers cannot be
copied. In this program all characteristics of neural network
are contained within the bunch structure. It is specified as
an argument for functions being sent to the coprocessor for
execution. This structure contains field-pointers. In order to
copy the bunch structure properly to the coprocessor, its each
field must be copied separately and then the whole structure
assembled again on the coprocessor.

#define COPY_FLOAT_ARRAY_IN(arr) \
float* arr ## 0 = bunch.arr[0]; \
float* arr ## 1 = bunch.arr[1]; \
float* arr ## 2 = bunch.arr[2]; \
float* arr ## 3 = bunch.arr[3]; \
float* arr ## 4 = bunch.arr[4]; \
float* arr ## 5 = bunch.arr[5]; \
float* arr ## 6 = bunch.arr[6]

#define COPY_FLOAT_ARRAY_OUT(arr) \
bunch.arr[0] = arr ## 0; \
bunch.arr[1] = arr ## 1; \
bunch.arr[2] = arr ## 2; \
bunch.arr[3] = arr ## 3; \
bunch.arr[4] = arr ## 4; \
bunch.arr[5] = arr ## 5; \
bunch.arr[6] = arr ## 6

...
COPY_FLOAT_ARRAY_IN(d_B);
COPY_FLOAT_ARRAY_IN(d_Wdelta);
COPY_FLOAT_ARRAY_IN(d_Bdelta);
COPY_FLOAT_ARRAY_IN(d_Y);
COPY_FLOAT_ARRAY_IN(d_E);

#pragma offload target(mic:0) \



mandatory \
inout(d_W0: length(
bunch.dnnLayerArr[0] *
bunch.dnnLayerArr[1])) \

inout(d_W1: length(
bunch.dnnLayerArr[1] *
bunch.dnnLayerArr[2])) \

inout(d_W2: length(
bunch.dnnLayerArr[2] *
bunch.dnnLayerArr[3])) \

inout(d_W3: length(
bunch.dnnLayerArr[3] *
bunch.dnnLayerArr[4])) \

inout(d_W4: length(
bunch.dnnLayerArr[4] *
bunch.dnnLayerArr[5])) \

inout(d_W5: length(
bunch.dnnLayerArr[5] *
bunch.dnnLayerArr[6])) \

inout(d_W6: length(
bunch.dnnLayerArr[6] *
bunch.dnnLayerArr[7]))

//similarly for d_B, d_Wdelta,
d_Bdelta, d_Y, d_E

{

// loop of training

COPY_FLOAT_ARRAY_OUT(d_W);

//similarly for d_B, d_Wdelta,
d_Bdelta, d_Y, d_E

}

Experiments on test dataset demonstrated that this data transfer
model is not adequate for this task. The program runs slightly
faster, than on one core processor and 12 times slower than on
all of the cores (coprocessor II). Therefore it has been decided
to use implicit data transfer model on coprocessor.

2) Implicit data transfer model: The basic principle for
the implicit model is the usage of memory shared between
CPU and MIC in the virtual address space. This method
allows transferring of complex data types, thus ridding of
the limitation of bitwise copying occurring on explicit model.
Program conversion implemented as follows:

1) Data was marked by the _Cilk_shared keyword that

allows allocating it in the shared memory.
bunch.d_B[i-1]=(_Cilk_shared
float*)_Offload_shared_malloc(size);

2) Functions used inside the learning cycle were marked as
shared:
#pragma offload_attribute(push,\

_Cilk_shared)
...
#pragma offload_attribute(pop)

3) A separate function was created for the neuron network
learning loop for using it in shared memory:
_Cilk_shared void
dnn(Bunch& bunch, Chunk& chunk)
{

while(FetchOneBunch(chunk, bunch))
{

dnnForward (bunch);
dnnBackward(bunch);
dnnUpdate (bunch);

}
}

4) A function sent for execution to the coprocessor was
marked by the command _Cilk_offload:
_Cilk_offload dnn(bunch, chunk);

IV. RESULTS

It is worth mentioning, that implicit working model proved
to be easier to program, compared to the explicit model
and enabled to reach an acceptable time of learning. It was
accelerated by 13.5 compared to the sequential version.

Table II describes results of experiments. Test number
column indicates a test case from the following list:

1) Initial non-optimized version that was run on one-core
processor.

2) Optimized version that was run on multi-core x86 pro-
cessor (OpenMP directives and vectorization).

3) Optimized version that was run on MIC architecture
(OpenMP directives, vectorization and explicit data trans-
fer).

4) Optimized version that was run on MIC architecture
(OpenMP directives, vectorization and implicit data trans-
fer).

Other columns in order from left to right: architecture, the
number of threads, time of execution, speed up (compared
with initial non-optimized version) and learning accuracy for
each test.

V. DISCUSSION

In the course of research, deep neural network learning has
been tested on a variety of computer architectures. Results
are shown on Table II. The MIC version does not increase
performance compared to parallel version of the processor. It is



TABLE II
COMPARING WORKING TIME AND PRECISION OF LEARNING.

Test number Arch. Threads Time, s Speed up Accuracy

1 x86 1 7952 1.0 19.19
2 x86 48 542 14.7 18.99
3 MIC 240 6889 1.2 20.05
4 MIC 240 589 13.5 20.05

affected by many factors associated with particular properties
of the algorithm and limitations placed on the task. Algorithm
iteration leaves little potential for parallelization. Optimization
is only possible on each step associated with calculations on
matrix. Compared to the sequential version, MIC architecture-
based acceleration is 13.5 faster, which correlates with other
research [?], [?]. On a side note, the coprocessor native-mode
has not been considered: when the whole code is launched
on the coprocessor without the main processor application.
Presumably, that will allow an improved acceleration, but this
question remains an open ground for further research.

The choice of data transfer model depends on the nature
of the data that needs to be copied to the device. Explicit
model is good enough for copying contiguous data block. The
model provides many options to control data transfer which are
manually selected by a programmer. However, manual copying
is difficult to manage for complex structures with many fields
and does not allow to send only those parts of arrays that
were changed since the last transfer. In case of implicit
model, it is the system that takes responsibility for managing
data transfer. Changes to data residing in shared memory are
synchronized automatically on entering and leaving offload
region. So, this model is preferable for complex data structures
and for structures with unpredictable or complex memory
access pattern.

VI. CONCLUSION

The problem of research has been studied, regarding the
possibility of neural networks acceleration with sequential
learning algorithm. The optimization for parallel architectures
has been carried out; the factors influencing the effectiveness
of parallelization have been presented. The matter of MIC
architecture effectiveness in this task has been addressed, as
well.

ACKNOWLEDGEMENTS

The research was carried out using computational re-
sources of Resource Centre “Computational Centre of Saint
Petersburg State University” (T-EDGE96 HPC-0011828-001)
within frameworks of grants of Russian Foundation for Ba-
sic Research (projects no. 16-07-01111, 16-07-00886, 16-
07-01113) and Saint Petersburg State University (project no.
0.37.155.2014).

REFERENCES

[1] A. Duran and M. Klemm, “The Intel Many Integrated Core architec-
ture,” in International Conference on High Performance Computing and
Simulation (HPCS). IEEE, 2012, pp. 365–366.

[2] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, no. 5786, pp. 504–507,
2006.

[3] Y. Bengio, Y. LeCun et al., “Scaling learning algorithms towards ai,”
Large-scale kernel machines, vol. 34, no. 5, 2007.

[4] P. Werbos, “Beyond regression: New tools for prediction and analysis in
the behavioral sciences,” Ph.D. dissertation, Harvard University, 1974.

[5] L. Jin, Z. Wang, R. Gu, C. Yuan, and Y. Huang, “Training large scale deep
neural networks on the intel xeon phi many-core coprocessor,” in Parallel
& Distributed Processing Symposium Workshops (IPDPSW), 2014 IEEE
International. IEEE, 2014, pp. 1622–1630.

[6] A. Viebke, “Accelerated deep learning using intel xeon phi,” Ph.D.
dissertation, Linnaeus University, 2015.

[7] M. Dixon, D. Klabjan, and J. H. Bang, “Implementing deep neural
networks for financial market prediction on the intel xeon phi,” in
Proceedings of the 8th Workshop on High Performance Computational
Finance. ACM, 2015, p. 6.

[8] M. Stanic, O. Palomar, I. Ratkovic, M. Duric, O. Unsal, A. Cristal, and
M. Valero, “Evaluation of vectorization potential of graph500 on intel’s
xeon phi,” in High Performance Computing & Simulation (HPCS), 2014
International Conference on. IEEE, 2014, pp. 47–54.

[9] C. Calvin, F. Ye, and S. Petiton, “The exploration of pervasive and fine-
grained parallel model applied on intel xeon phi coprocessor,” in P2P,
Parallel, Grid, Cloud and Internet Computing (3PGCIC), 2013 Eighth
International Conference on. IEEE, 2013, pp. 166–173.


