
Subordination: Providing resilience to simultaneous
failure of multiple cluster nodes

(WORK-IN-PROGRESS)

Ivan Gankevich Yuri Tipikin Vladimir Korkhov
Dept. of Computer Modeling and Multiprocessor Systems

Saint Petersburg State University
Saint-Petersburg, Russia

Email: i.gankevich@spbu.ru, y.tipikin@spbu.ru, v.korkhov@spbu.ru

Abstract—In this paper we describe a new framework for
creating distributed programmes which are resilient to clus-
ter node failures. Our main goal is to create a simple and
reliable model, that ensures continuous execution of parallel
programmes without creation of checkpoints, memory dumps
and other I/O intensive activities. To achieve this we introduce
multi-layered system architecture, each layer of which consists
of unified entities organised into hierarchies, and then show
how this system handles different node failure scenarios. We
benchmark our system on the example of real-world HPC
application on both physical and virtual clusters. The results
of the experiments show that our approach has low overhead
and scales to a large number of cluster nodes.

I. Introduction

In large scale cluster environments node failures are
common. In general this does not lead to global cluster
malfunction, but it has huge impact on job running
on faulty resources. Classical MPI programmes fail, if
any one of cluster nodes on which the programme is
running fails. Today existing solutions mainly focus on
making application checkpoints, but with increasing size of
supercomputers and HPC clusters this approach becomes
less efficient. Our approach to make cluster computations
reliable and efficient is to use special framework focused
on structuring parallel programme in strict hierarchy of
parallel and sequential parts. Using different fault tolerant
scenarios based on hierarchy interactions, this framework
provides continuous execution of a parallel programme in
case of hardware errors or electricity outages.

The aim of the research reported here is to investigate
how continuous execution of parallel programmes in the
presence of node failures can be provided on the level of
software framework. This framework replaces both MPI
library and batch job scheduler by introducing the notion
of a kernel — a unit of work which can be copied between
cluster nodes and re-executed any number of times — if
it is required to provide resilience to node failures. In this
paper we present an algorithm that guarantees continuous
execution of a parallel programme upon failure of all nodes
except one. This algorithm is based on the one developed
in previous papers [1], [2], where only one node failure at a
time is guaranteed to not interrupt programme execution.

Daemon process Compute devices

Child process 0

Factory

Parallel
pipeline

I/O
pipeline

Schedule-based
pipeline

Network
pipeline

Process
pipeline

Upstream
thread pool

Downstream
thread pool

Core 0

Disk 0

Timer

NIC 0

Child process
pipeline

Core 1

Core 2

Core 3

CPU

Storage

Network

Factory

Fig. 1. Mapping of parent and child process pipelines to compute
devices. Solid lines denote aggregation, dashed lines denote mapping
between logical and physical entities.

In this paper failure detection methods are not studied,
and node failure is assumed if the corresponding network
connection abruptly closes. Node failure handling, pro-
vided by our algorithm, is transparent for a programmer:
there is no need explicitly specify which kernels should be
copied to other cluster nodes. However, its implementation
cannot be used to provide fault tolerance to existing
parallel programmes based on MPI or other libraries:
the purpose of software framework developed here is
to seamlessly provide fault tolerance for new parallel
applications. If a failure is detected by some external
programme, then removing this node from the cluster is
as simple as killing the daemon process which is integral
part of the framework.

II. System architecture

Our model of computer system has layered architecture
(fig. 1):

a) Physical layer: Consists of nodes and di-
rect/routed physical network links. On this layer full



network connectivity, i.e. an ability to send packet from
one cluster node to any other, is assumed.

b) Daemon layer: Consists of daemon processes re-
siding on cluster nodes and hierarchical (master/slave)
logical links between them. Master and slave roles are dy-
namically assigned to daemon processes, i.e. any physical
cluster node may become a master or a slave. Dynamic
reassignment uses leader election algorithm that does not
require periodic broadcasting of messages, and the role is
derived from node’s IP address. Detailed explanation of
the algorithm is provided in [1]. Its strengths are scalabil-
ity to a large number of nodes and low overhead, which are
essential for large-scale high-performance computations,
and its weakness is in artificial dependence of node’s
position in the hierarchy on its IP address, which may
not desirable in virtual environments, where nodes’ IP
addresses may change without a notice.

The only purpose of daemon hierarchy is to provide
load balancing and automatically reconfigurable logical
tree hierarchy of cluster nodes. This hierarchy is used to
distribute the load from the current node to its neighbours
by simply iterating over all directly connected daemons.
Upon reconfiguration due to node failure or due to new
node joining the cluster, daemons exchange messages
telling each other how many daemons are “behind” the
corresponding link in the hierarchy. This information is
used to distribute the load evenly, even if a parallel
programme is launched on a slave node. In addition, this
topology reduces the number of simultaneous connections,
thus preventing network overload.

Load balancing is implemented as follows. When dae-
mon A tries to become a subordinate of daemon B, it sends
a message to a corresponding IP address telling how many
daemons are already connected to it (including itself). If
there are no connections, then it counts itself only. After
all links between daemons in the cluster are established,
every daemon has enough information to tell, how many
nodes exist behind each link. If the link is between a slave
and a master, and the slave wants to know, how many
nodes are behind the master, then it simply subtracts the
total number of nodes behind all of its slave nodes from
the total number of nodes behind the master to get the
correct amount. To distribute kernels across nodes we use
simple round-robin algorithm, i.e. iterate over all links
of the current daemon (including the link to its master)
taking into account how many nodes are behind each link:
the pointer advances to a next link, only when enough
number of kernels are sent through the current link. That
way even if an application is launched on a slave node in
the bottom of the hierarchy, the kernels will be distributed
evenly across all cluster nodes. A kernel can not be sent
through the link, from which it was received.

The advantage of this approach is that it can be ex-
tended to include sophisticated logic into load distribution
policy. Any metric, that is required to implement such
policy, can be sent from the directly linked daemon during

the link initialisation. As of now, only the number of
nodes behind the link is sent. The disadvantage of the
approach is that an update of the metric happens only
when a change in the hierarchy occurs: if a metric changes
periodically, then periodically sending update messages
is also required for implementing the policy, and too
frequent updates may consume considerable amount of
network bandwidth. The other disadvantage is that when
reconfiguration of the hierarchy occurs due to a node
failure or a new node joining the cluster, the kernels
that are already executed on the nodes are not taken into
account in the load distribution, so frequent updates to
the hierarchy may cause uneven load distribution (which,
however, balances over time). Uneven load distribution
does not cause node overload, since there is a kernel pool
on each node that queues the kernels prior to execution.

Dynamic master/slave role distribution coupled with
kernel distribution makes overall system architecture ho-
mogeneous within single cluster. On every node the same
daemon is run, and no configuration is needed to make a
hierarchy of daemons — it happens automatically.

c) Kernel layer: Consists of kernels and hierarchical
(parent/child) logical links between them. The only pur-
pose of kernel hierarchy is to provide fail over for kernels.

The framework provides classes and methods to simplify
development of distributed applications and middleware.
The focus is to make distributed application resilient to
failures, i.e. make it fault tolerant and highly available,
and do it transparently to a programmer. All classes are
divided into two layers: the lower layer consists of classes
for single node applications, and the upper layer consists
of classes for applications that run on an arbitrary number
of nodes. There are two kinds of tightly coupled entities
in the framework — kernels and pipelines — which are
used together to compose a programme.

Kernels implement control flow logic in theirs act
and react methods and store the state of the current
control flow branch. Domain-specific logic and state are
implemented by a programmer. In act method some
function is either sequentially computed or decomposed
into subtasks (represented by another set of kernels) which
are subsequently sent to a pipeline. In react method
subordinate kernels that returned from the pipeline are
processed by their parent. Calls to act and react methods
are asynchronous and are made within threads spawned by
a pipeline. For each kernel act is called only once, and for
multiple kernels the calls are done in parallel to each other,
whereas react method is called once for each subordinate
kernel, and all the calls are made in the same thread
to prevent race conditions (for different parent kernels
different threads may be used).

Pipelines implement asynchronous calls to act and
react, and try to make as many parallel calls as possible
considering concurrency of the platform (no. of cores per
node and no. of nodes in a cluster). A pipeline consists of
a kernel pool, which contains all the subordinate kernels



sent by their parents, and a thread pool that processes
kernels in accordance with rules outlined in the previous
paragraph. A separate pipeline exists for each compute
device: there are pipelines for parallel processing, schedule-
based processing (periodic and delayed tasks), and a proxy
pipeline for processing of kernels on other cluster nodes
(see fig. 1).

In principle, kernels and pipelines machinery reflect the
one of procedures and call stacks, with the advantage that
kernel methods are called asynchronously and in parallel
to each other. The stack, which ordinarily stores local
variables, is modelled by fields of a kernel. The sequence
of processor instructions before nested procedure calls
is modelled by act method, and sequence of processor
instructions after the calls is modelled by react method.
The procedure calls themselves are modelled by construct-
ing and sending subordinate kernels to the pipeline. Two
methods are necessary because calls are asynchronous and
one must wait before subordinate kernels complete their
work. Pipelines allow circumventing active wait, and call
correct kernel methods by analysing their internal state.

III. Resilience to multiple node failures
To disambiguate hierarchical links between daemon

processes and kernels and to simplify the discussion, we
will use the following naming conventions throughout the
text. If the link is between two daemon processes, the
relationship is master-slave. If the link is between two
kernels, then the relationship is principal-subordinate (or
parent-child). Two hierarchies are orthogonal to each other
in a sense that no kernel may have a link to a daemon, and
vice versa. Since daemon hierarchy is used to distribute
the load on the cluster, kernel hierarchy is mapped onto it,
and this mapping can be arbitrary. It is common to have
principal kernel on a slave node with its subordinate ker-
nels distributed evenly between all cluster nodes (including
the node where the principal is located). Both hierarchies
can be arbitrarily deep, but “shallow” ones are preferred
for highly parallel programmes, as there are less number of
hops when kernels are distributed between cluster nodes.
Since there is one-to-one correspondence between daemons
and cluster nodes, they are used interchangeably in the
paper.

In our system a node is considered failed if the corre-
sponding network connection is abruptly closed. Develop-
ing more sophisticated failure detection techniques is out
of scope of this paper. For the purpose of studying recovery
procedures upon node failure this simple approach is
sufficient.

Consequently, any kernel which resided on the failed
node is considered failed, and failure recovery procedure
is triggered. Depending on the position of the kernel
in kernel hierarchy recovery is carried out on the node
where parent or one of the subordinate kernels resides.
Recovery procedure for failed subordinate kernel is re-
execution of this kernel on a healthy node, which is

triggered automatically by the node where its parent
kernel is located. If the subordinate communicates with
other subordinates of the same parent kernel and one of
them fails, all kernels as well as their parent are considered
failed, and a copy of the parent is re-executed on a healthy
node. If parent kernel fails, then its copy, which is sent
along with every subordinate on other cluster nodes, is re-
executed on the node where the first survived subordinate
kernel resides. Kernel failure is detected only for kernels
that are sent from one node to another (local kernels are
not considered). A healthy node does not need to be a
new one, any already loaded node will do: recovery does
not overload the node, because each node has its own pool
of kernels in which they wait before being executed by a
pipeline.

When a kernel is sent to other node, its copy is saved
in the outbound buffer (a list of kernels, that were sent
to a particular node), from which it is removed only
when the kernel returns to its parent. If the corresponding
connection closes, all kernels from this buffer are retrieved
and distributed across available nodes including the cur-
rent node. The fail over algorithm is straightforward for
a subordinate, but for a principal it is more involved.
Whereas a subordinate is implicitly copied to another node
as a consequence of load distribution, a principal is left
on the one node. In order to implement resilience to a
principal failure, one needs to copy it along with each
of its subordinates to other nodes, and provide a rule to
determine from which copy the principal is restored upon
the node failure. The following paragraphs discuss this
algorithm and the rule in detail.

A. Failure scenarios
The main purpose of the system is to provide continuous

execution of kernels in the presence of node failures. There
are three types of such failures.

1) Simultaneous failure of at most one node.
2) Simultaneous failure of more than one node but less

than total number of nodes.
3) Simultaneous failure of all nodes (electricity outage).

For the sake of simplicity, it is assumed that parallel
programme runs on all cluster nodes. Our system provide
resilience to node failures for the first and the second
scenario.

By dividing kernels into principals and subordinates we
create recovery points. Each principal is, mainly, a control
unit, with a goal. To achieve it, principal divides the task
into parts and creates a subordinate to compute each of
them. The principal copies itself to each subordinate in the
order of their creation, and includes in each subordinate
a list of all node IP addresses to which previously created
subordinates were sent (a list of neighbours). When a
connection from master node to slave node closes either
as a result of a node failure, or as a consequence of
the daemon hierarchy change, all kernels which reside
on the corresponding cluster node are considered failed,



and recovery process is triggered in accordance with the
following scenarios.

Scenario 1 & 2: With respect to kernel hierarchy,
there are three possible variants of this failure: when a
principal fails, when a subordinate fails (and both of them
may or may not reside on the same cluster node) and when
any combination of a principal and its subordinates fail.

When a subordinate fails, its copy is simply restored
from the outbound buffer on the node where its principal
is located. When the corresponding network connection
closes all kernels from the buffer are automatically dis-
tributed across available nodes, or executed locally if there
are no network connections.

When a principal fails every subordinate has its copy,
but we need to restore it only once and only on one node to
correctly continue programme execution. To ensure that
the principal is restored only once, each subordinate tries
to find the first surviving node from the IP address list
of neighbours. If such node is online, the search stops and
the subordinate is deleted. If the node is not found, the
subordinate restores the principal from the copy on the
current node and deletes itself. This algorithm is executed
on every node, to which a copy of the principal was sent,
and the guarantee that only one copy of the principal is
restored is provided the implied hierarchy of IP addresses:
every subordinate of the principal has the list of nodes
to which only previously created subordinates were sent,
and no communication originating from previously created
subordinate to the newer subordinate is possible (only
the other way round). Subordinate deletion is necessary,
because the whole computational step, modelled by the
principal, is re-executed from the initial state, and there
is no simple and reliable way of taking into account partial
results which were produced so far by the subordinates.
Simultaneous failure of a combination of a principal and
a number of its subordinates is handled the same way.

Deep kernel hierarchies: In deep kernel hierarchy a
kernel may act as a subordinate and as a principal at the
same time. Thus, we need to copy not only direct principal
of each subordinate kernel, but also all principals higher
in the hierarchy recursively. So, the additional variant is
a generalisation of the two previous ones for deep kernel
hierarchies.

Handling principal failure in a deep kernel hierarchy
may involve a lot of overhead, because its failure is
detected only when a subordinate finishes its execution.
So, for sufficiently large number of subordinates, there
can be a situation in which some of them finished their
execution and triggered principal recovery, whereas other
continue their execution in parallel to the newly created
subordinates from the recovered principal. This behaviour
may not be a desired one for programmes with sophisti-
cated logic, which interact with external databases, as
this may lead to deadlocks or information corruption in
the corresponding database. For batch processing jobs this
means, that writing to files by multiple subordinates is not

reliable, and to avoid data loss programme logic should
be changed so that only one (principal) kernel writes to
a file, whereas subordinates only process separate dataset
parts.

Scenario 3: Both failure scenarios are handled at run-
time: the system will not stop execution of a programme,
if some of its kernels are placed on failed node, unless all
nodes on which the programme runs, fail simultaneously.
This scenario is commonly occur as a result of electricity
outage, and the main difference of this scenario is kernel
log usage. Kernel log is stored on reliable storage and
contains kernel initial states, recorded at a beginning of
their execution, and each “update” to this state, recorded
after a subordinate returns to its principal (a call to react).
Each daemon maintains its own kernel log file, which is
replicated on the selected number of nodes to provide
resilience. Replication is configured externally by means
of a parallel file system, RAID array or any other suitable
technology.

When a daemon starts, recovery from the failure of all
cluster nodes is handled as the follow.

• First, the system waits until a defined timeout elapses
before staring recovery process to ensure as many
nodes as possible are bootstrapped.

• Next, the system builds a sequential unified log from
all log files for every programme that was run on the
cluster when the failure occurred.

• After the unified log is ready, the system detects latest
states of all alive kernels and re-executes them.

Recovery from a failure of all nodes is the most inef-
ficient, because it involves the use of persistent storage
and there is no reliable way to ensure that all cluster
nodes have been bootstrapped. If some nodes were not
bootstrapped properly, missing kernels are considered
failed in accordance with the first and the second scenarios.
This may lead to re-execution of considerable portion of
parallel programme, especially when multiple principal
kernels in the same hierarchy branch have failed. If a node
fails in the middle of recovery process, the whole process
is restarted from the beginning.

IV. Evaluation

Proposed node failure handling approach was evaluated
on the example of real-world application [3]. The applica-
tion generates ocean wavy surface in parallel with specified
frequency-directional spectrum. There are two sequential
steps in the programme. The first step is to compute model
coefficients by solving system of linear algebraic equations.
The system is solved in parallel on all cores of the principal
node. The second step is to generate wavy surface, parts
of which are generated in parallel on all cluster nodes
including the principal one. All generated parts are written
in parallel to individual files. So, from computational point
of view the programme is embarrassingly parallel with
little synchronisation between concurrent processes; the



TABLE I
Test platform configuration.

CPU Intel Xeon E5440, 2.83GHz
RAM 4Gb
HDD ST3250310NS, 7200rpm
No. of nodes 12
No. of CPU cores per node 8
Interconnect 1Gbit Ethernet

corresponding kernel hierarchy has one principal and N
subordinates.

All experiments were run on physical computer cluster
consisting of 12 nodes. Wavy ocean surface parts were
written to Network File System (NFS) which is located
on a dedicated server. The input data was read from
NFS mounted on each node, as it is small in size and
does not cause big overhead. Platform configuration is
presented in Table I. A dry run of each experiment —
a run in which all expensive computations (wavy surface
generation and coefficient computation) were disabled, but
memory allocations and communication between processes
were retained — was performed on the virtual cluster.

The first failure scenario (see Section III-A) was evalu-
ated in the following experiment. At the beginning of the
second sequential application step all parallel application
processes except one were shutdown with a small delay
to give principal kernel time to distribute its subordinates
between cluster nodes. The experiment was repeated 12
times with a different surviving process each time. For
each run total application running time was measured. In
this experiment the principal kernel was executed on the
first node, and subordinate kernels are evenly distributed
across all nodes including the first one. The result of the
experiment is the overhead of recovery from a failure of a
specific kernel in the hierarchy, which should be different
for principal and subordinate kernel.

In the second experiment we benchmarked overhead of
the multiple node failure handling code by instrument-
ing it with calls to time measuring routines. For this
experiment all logging and output was disabled to exclude
its time from the measurements. This test was repeated
for different number of cluster nodes. The purpose of
the experiment is to measure precisely the overhead of
multiple node failure handling code and to investigate
how failure handling overhead affects scalability of the
application to a large number of nodes.

V. Results
The first experiment showed that in terms of perfor-

mance there are three possible outcomes when all nodes
except one fail (fig. 2). The first case is failure of all
kernels except the principal and its first subordinate.
There is no communication with other nodes to find the
survivor and no recomputation of the current sequential
step of the application, so it takes the least time to
recover from the failure. The second case is failure of

Surviving node no.

R
un

ni
ng

 ti
m

e,
 s

1 2 3 4 5 6 7 8 9 10 11 12

11
0

11
5

12
0

12
5

Fig. 2. Application running time in the presence of a failure of
all physical cluster nodes except one for different surviving cluster
nodes.

Surviving node no.

R
un

ni
ng

 ti
m

e,
 s

1 2 3 4 5 6 7 8
18

0
19

0
20

0

Fig. 3. Application running time in the presence of a failure of all
virtual cluster nodes except one for different surviving cluster nodes.

all kernels except any subordinate kernel other than the
first one. Here the survivor tries to communicate with
all subordinates that were created before the survivor,
so the overhead of recovery is larger. The third case is
failure of all kernels except the last subordinate. Here
performance is different only in the test environment,
because this is the node to which standard output and
error streams from each parallel process are copied over
the network. So, the overhead is smaller, because there
is no communication over the network for streaming the
output. The same effect does not occur on virtual cluster
(fig. 3). To summarise, performance degradation is larger
when principal kernel fails, because the survivor needs
to recover initial principal state from the backup and
start the current sequential application step again on
the surviving node; performance degradation is smaller
when subordinate kernel fails, because there is no state to
recover, and only failed kernel is executed on one of the
remaining nodes.

The second experiment showed that overhead of mul-
tiple node failure handling code increases linearly with
the number of nodes (fig. 4), however, its absolute value
is small compared to the programme run time. Linear



No. of nodes

O
ve

rh
ea

d,
 m

s

1 2 3 4 5 6 7 8 9 10 11 12

0
20

40
60

Fig. 4. Overhead of failure handling code for different number of
physical cluster nodes.

No. of nodes

O
ve

rh
ea

d,
 m

s

2 4 8 16 32 64

1
2

5
20

Fig. 5. Overhead of failure handling code for different number of
virtual cluster nodes.

increase in overhead is attributed to the fact that for each
subordinate kernel linear search algorithms are used when
sending or receiving it from other node to maintain an
array of its neighbours. When subordinate kernel is sent
to remote node, all of its previously created neighbours
IP addresses are added to the neighbours array without
duplication, and the kernel itself is appended to the global
internal map which stores principal kernels and theirs
subordinates; when subordinate kernel returns from the
remote node, it is removed from the array of its principal
subordinates (retrieved from the internal map), which also
requires linear search. So, the second experiment showed
that for real-world programme overhead of multiple node
failure handling is small.

VI. Discussion
Linear complexity in multiple node failure handling

code can be avoided by replacing arrays with sets or
maps, but the total overhead is small, so we deemed this
optimisation unnecessary complication of the source code.
Moreover, in real-world scenario it is probably impractical
to copy principal kernel state to each subordinate node,
and minimal number of copies may be configured in the
programme instead. In this case using maps and sets over

arrays may incur more overhead as they require certain
amount of elements to make searching for an element more
efficient than in arrays [4], [5]. There is no such thing
as minimal number of object copies that ensures fault-
tolerance in HPC, but for parallel file systems there is a
number of replicas. This number is typically set to 2 or 3
depending on the particular site. We believe that there is
no need to set number of object copies more than that, as
it allows to tolerate simultaneous failure of 2 and 3 nodes
respectively: it should be more than enough to tolerate
node failures which are common at large scale [6]. So,
using arrays with linear search complexity is more efficient
than maps and sets, because the number of elements in
them is small, and linear search takes less time than fixed
time hash-based lookup.

Transmitting IP addresses of previous nodes is an
optimisation over mapping to only linear hierarchies, that
is hierarchies where only one subordinate is allowed at any
given time point. For a hierarchy consisting of a principal
kernel with multiple subordinates there is unique mapping
that transforms it to linear hierarchy: the principal creates
and sends to the pipeline only the first subordinate, after
that the first subordinate creates and sends the second
subordinate to the pipeline and so on. This approach is
inefficient because creation of subordinates is sequential
and each subordinate is created after sending the previous
one to a cluster node. Moreover, each subordinate carries
a copy of its parent to be able to proceed programme
execution when the parent fails. Instead of transforming
initial hierarchy to a linear one, one can copy IP addresses
of all previously created subordinates along with the next
subordinate to the cluster node. The number of copies
may be adjusted in the programme or a configuration file.
When principal kernel fails each subordinate determines
alive subordinate kernel starting from the first address in
the list. If such kernel is not found, execution proceeds
on the current node. The sequence of IP addresses in the
list implicitly forms linear hierarchy, which makes this
optimisation equivalent to the transformation.

There are essentially two scenarios of failures. Failure of
more than one node at a time and electricity outage. In the
first scenario failure is handled by sending a list of previous
IP addresses to the subsequent kernels in the batch. Then
if subordinate node and its master fail simultaneously, the
surviving subordinate nodes scan all of the IP addresses
they received until they find alive node and the parent is
revived on this node.

We believe that having kernel state and their inter-
dependencies is enough to mitigate any combination of
node failures: given that at least one node survives, all
programmes continue their execution in possibly degraded
state. However it requires recursively duplicating prin-
cipals and sending them along with the subordinates.
Only electricity outage requires writing data to disk,
other failures can be mitigated by duplicating kernels in
memory.



The framework has not been compared to other similar
approaches, because to the best of our knowledge there is
no library/framework that provides resilience to simulta-
neous failure of more than one node (including master
node), and comparison to checkpoint/restart approach
would be unfair, as we do not stop all parallel processes of
an application and dump RAM image to stable storage,
but only copy kernels into memory of another node. This
approach is far more efficient than checkpoint/restart as
no data is written to disk, and only a small fraction of
the whole memory occupied by the application is copied
to the other node.

VII. Related work
The feature that distinguishes our research with respect

to some others, is the use of hierarchy as the only possible
way of defining dependencies between objects, into which
a programme is decomposed. The main advantage of
hierarchy is trivial handling of object failures.

In [7] the authors describe codelet model for exascale
machines. This model breaks a programme into small bits
of functionality, called codelets, and dependencies between
them. The programme dataflow represents directed graph,
which is called well-behaved if forward progress of the
programme is guaranteed. In contrast to our model, in
codelet model hierarchical dependencies are not enforced,
and resilience to failures is provided by object migration
and relies on hardware fault detection mechanisms. Fur-
thermore, execution of kernel hierarchies in our model
resembles stack-based execution of ordinary programmes:
the programme finishes only when all subordinate kernels
of the main kernel finish. So, there is no need to define
well-behaved graph to guarantee programme termination.

In [8] the authors describe migratable objects model for
parallel programmes. In the framework of this model a pro-
gramme is decomposed into objects that may communicate
with each other by sending messages, and can be migrated
to any cluster node if desired. The authors propose several
possibilities, how this model may enhance fault-tolerance
techniques for Charm++/AMPI programmes: proactive
fault detection, checkpoint/restart and message logging. In
contrast to our model, migratable objects do not compose
a hierarchy, but may exchange messages with any object
address of which is known to the sender. A spanning
tree of nodes is used to orchestrate collective operations
between objects. This tree is similar to tree hierarchy of
nodes, which is used in our work to distribute kernels
between available cluster nodes, but we use this hierarchy
for any operations that require distribution of work, rather
than collective ones. Our model does not use techniques
described in this paper to provide fault-tolerance: upon
a failure we re-execute subordinate kernels and copy
principal kernels to be able to re-execute them as well. Our
approach blends checkpoint/restart and message logging:
each kernel which is sent to other cluster node is saved
(logged) in the outbound buffer of the sender, and removed

from the buffer upon return. Since subordinate kernels
are allowed to communicate only with their principals
(all other communication may happen only when physical
location of the kernel is known, if the communication
fails, then the kernel also fails to trigger recovery by the
principal), a collection of all logs on each cluster nodes
constitutes the current state of programme execution,
which is used to restart failed kernels on the surviving
nodes.

To summarise, the feature that distinguishes our model
with respect to models proposed for improving parallel
programme fault-tolerance is the use of kernel hierarchy —
an abstraction which defines strict total order on a set of
kernels (their execution order) and, consequently, defines
for each kernel a principal kernel, responsibility of which
is to re-execute failed subordinate kernels upon a failure.

With respect to various high-availability cluster
projects [9]–[11] our approach has the following advan-
tages. First, it scales with the large number of nodes,
as only point-to-point communication between slave and
master node is used instead of broadcast messages (which
has been shown in the previous work [1]), hence, the use
of several switches and routers is possible within single
cluster. Second, our approach does not require the use of
standby servers to provide high availability of a master
node: we provide fault tolerance on kernel layer instead.
As the computation progresses, kernels copy themselves
on nodes that are logically connected to the current one,
and these can be any nodes from the cluster. Finally,
high-availability cluster projects do not deal with parallel
programme failures, they aim to provide high-availability
for services running on master node (NFS, SMB, DHCP,
etc.), whereas our approach is specifically targeted at
providing continuous execution of parallel applications.

VIII. Conclusion
In the paper we propose a system architecture consisting

of two tree hierarchies of entities, mapped on each other,
that simplifies provision of resilience to failures for parallel
programmes. The resilience is solely provided by the
use of hierarchical dependencies between entities, and is
independent on each layer of the system. To optimise
handling failure of multiple cluster nodes, we use the
hierarchy implied by the order of creation of subordinate
entities. The hierarchical approach to fault tolerance is
efficient, scales to a large number of cluster nodes, and
requires slow I/O operations only for the most disastrous
scenario — simultaneous failure of all cluster nodes.

The future work is to standardise application pro-
gramming interface of the system and investigate load-
balancing techniques, which are optimal for a programme
composed of many computational kernels.

Acknowledgement
The research was carried out using computational

resources of Resource Centre “Computational Cen-
tre of Saint Petersburg State University” (T-EDGE96



HPC-0011828-001) within frameworks of grants of Russian
Foundation for Basic Research (projects no. 16-07-01111,
16-07-00886, 16-07-01113).

References
[1] I. Gankevich, Y. Tipikin, and V. Gaiduchok, “Subordination:

Cluster management without distributed consensus,” in High
Performance Computing & Simulation (HPCS), 2015 Interna-
tional Conference on. IEEE, 2015, pp. 639–642.

[2] I. Gankevich, Y. Tipikin, V. Korkhov, and V. Gaiduchok,
“Factory: Non-stop batch jobs without checkpointing,” in High
Performance Computing & Simulation (HPCS), 2016 Interna-
tional Conference on. IEEE, 2016, pp. 979–984.

[3] I. Gankevich and Y. Tipikin, “Factory: A framework for
distributed computing,” https://igankevich.github.io/factory/
index.html.

[4] A. Alexandrescu, Modern C++ design: generic programming
and design patterns applied. Addison-Wesley, 2001.

[5] B. Stroustrup, “Software development for infrastructure,” IEEE
Computer, vol. 45, no. 1, pp. 47–58, 2012.

[6] B. Schroeder and G. A. Gibson, “Understanding failures in
petascale computers,” in Journal of Physics: Conference Series,
vol. 78, no. 1. IOP Publishing, 2007, pp. 12–22.

[7] S. Zuckerman, J. Suetterlein, R. Knauerhase, and G. R. Gao,
“Using a codelet program execution model for exascale ma-
chines: position paper,” in Proceedings of the 1st International
Workshop on Adaptive Self-Tuning Computing Systems for the
Exaflop Era. ACM, 2011, pp. 64–69.

[8] E. Meneses, X. Ni, G. Zheng, C. L. Mendes, and L. V. Kale,
“Using migratable objects to enhance fault tolerance schemes in
supercomputers,” IEEE transactions on parallel and distributed
systems, vol. 26, no. 7, pp. 2061–2074, 2015.

[9] A. Robertson, “Linux-HA heartbeat system design.” in Proc.
of 4th Annual Linux Showcase & Conference. Atlanta,
Georgia: USENIX, 2000, pp. 305–316. [Online]. Available: http:
//static.usenix.org/publications/library/proceedings/als00/
2000papers/papers/full_papers/robertson/robertson_html/

[10] I. Haddad, C. Leangsuksun, and S. L. Scott, “HA-OSCAR: the
birth of highly available OSCAR,” Linux Journal, vol. 2003, no.
115, p. 1, 2003.

[11] C. B. Leangsuksun, L. Shen, T. Liu, and S. L. Scott, “Achieving
high availability and performance computing with an ha-oscar
cluster,” Future Generation Computer Systems, vol. 21, no. 4,
pp. 597–606, 2005.


