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Abstract. Master node fault-tolerance is the topic that is often dimmed
in the discussion of big data processing technologies. Although failure of
a master node can take down the whole data processing pipeline, this is
considered either improbable or too difficult to encounter. The aim of the
studies reported here is to propose rather simple technique to deal with
master-node failures. This technique is based on temporary delegation
of master role to one of the slave nodes and transferring updated state
back to the master when one step of computation is complete. That way
the state is duplicated and computation can proceed to the next step
regardless of a failure of a delegate or the master (but not both). We run
benchmarks to show that a failure of a master is almost “invisible” to
other nodes, and failure of a delegate results in recomputation of only one
step of data processing pipeline. We believe that the technique can be
used not only in Big Data processing but in other types of applications.

Keywords: parallel computing · Big Data processing · distributed com-
puting · backup node · state transfer · delegation · cluster computing ·
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1 Introduction

Fault tolerance of data processing pipelines is one of the top concerns in develop-
ment of job schedulers for big data processing, however, most schedulers provide
fault tolerance for subordinate nodes only. These types of failures are routinely
mitigated by restarting the failed job or its part on healthy nodes, and failure
of a master node is often considered either improbable, or too complicated to
handle and configure on the target platform. System administrators often find
alternatives to application level fault tolerance: they isolate master node from
the rest of the cluster by placing it on a dedicated machine, or use virtualisation
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technologies instead. All these alternatives complexify configuration and main-
tenance, and by decreasing probability of a machine failure resulting in a whole
system failure, they increase probability of a human error.

From such point of view it seems more practical to implement master node
fault tolerance at application level, however, there is no generic implementation.
Most implementations are too tied to a particular application to become uni-
versally acceptable. We believe that this happens due to people’s habit to think
of a cluster as a collection of individual machines each of which can be either
master or slave, rather than to think of a cluster as a whole with master and
slave roles being dynamically assigned to a particular physical machine.

This evolution in thinking allows to implement middleware that manages
master and slave roles automatically and handles node failures in a generic way.
This software provides an API to distribute parallel tasks on the pool of avail-
able nodes and among them. Using this API one can write an application that
runs on a cluster without knowing the exact number of online nodes. The mid-
dleware works as a cluster operating system overlay allowing to write distributed
applications.

2 Related work

Dynamic role assignment is an emerging trend in design of distributed sys-
tems [3, 5, 8, 21, 26], however, it is still not used in big data job schedulers.
For example, in popular YARN job scheduler [29], which is used by Hadoop and
Spark big data analysis frameworks, master and slave roles are static. Failure of
a slave node is tolerated by restarting a part of a job on a healthy node, and
failure of a master node is tolerated by setting up standby reserved server [22].
Both master servers are coordinated by Zookeeper service which itself uses dy-
namic role assignment to ensure its fault-tolerance [25]. So, the whole setup
is complicated due to Hadoop scheduler lacking dynamic roles: if dynamic roles
were available, Zookeeper would be redundant in this setup. Moreover, this setup
does not guarantee continuous operation of master node because standby server
needs time to recover current state after a failure.

The same problem occurs in high-performance computing where master node
of a job scheduler is the single point of failure. In [10,27] the authors use replica-
tion to make the master node highly-available, but backup server role is assigned
statically and cannot be delegated to a healthy worker node. This solution is
closer to fully dynamic role assignment than high-availability solution for big
data schedulers, because it does not involve using external service to store con-
figuration which should also be highly-available, however, it is far from ideal
solution where roles are completely decoupled from physical servers.

Finally, the simplest master node high-availability is implemented in Virtual
Router Redundancy Protocol (VRRP) [18, 20, 23]. Although VRRP protocol
does provide master and backup node roles, which are dynamically assigned to
available routers, this protocol works on top of the IPv4 and IPv6 protocols and
is designed to be used by routers and reverse proxy servers. Such servers lack
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the state that needs to be restored upon a failure (i.e. there is no job queue in
web servers), so it is easier for them to provide high-availability. In Linux it is
implemented in Keepalived routing daemon [6].

In contrast to web servers and HPC and Big Data job schedulers, some dis-
tributed key-value stores and parallel file systems have symmetric architecture,
where master and slave roles are assigned dynamically, so that any node can act
as a master when the current master node fails [3,5,8,21,26]. This design decision
simplifies management and interaction with a distributed system. From system
administrator point of view it is much simpler to install the same software stack
on each node than to manually configure master and slave nodes. Additionally,
it is much easier to bootstrap new nodes into the cluster and decommission old
ones. From user point of view, it is much simpler to provide web service high-
availability and load-balancing when you have multiple backup nodes to connect
to.

Dynamic role assignment would be beneficial for Big Data job schedulers
because it allows to decouple distributed services from physical nodes, which is
the first step to build highly-available distributed service. The reason that there
is no general solution to this problem is that there is no generic programming
environment to write and execute distributed programmes. The aim of this work
is to propose such an environment and to describe its internal structure.

The programming model used in this work is partly based on well-known ac-
tor model of concurrent computation [2, 17]. Our model borrows the concept of
actor—an object that stores data and methods to process it; this object can react
to external events by either changing its state or producing more actors. We call
this objects computational kernels. Their distinct feature is hierarchical depen-
dence on parent kernel that created each of them, which allows to implement
fault-tolerance based on simple restart of a failed subordinate kernel.

However, using hierarchical dependence alone is not enough to develop high-
availability of a master kernel—the first kernel in a parallel programme. To
solve the problem the other part of our programming model is based on bulk-
synchronous parallel model [28]. It borrows the concept of superstep—a sequen-
tial step of a parallel programme; at any time a programme executes only one
superstep, which allows to implement high-availability of the first kernel (under
assumption that it has only one subordinate at a time) by sending it along its
subordinate to a different cluster node thus making a distributed copy of it. Since
the first kernel has only one subordinate at a time, its copy is always consistent
with the original kernel. This eliminates the need for complex distributed trans-
actions and distributed consensus algorithms and guarantees protection from at
most one master node failure per superstep.

To summarise, the framework developed in this paper protects a parallel
programme from failure of any number of subordinate nodes and from one failure
of a master node per superstep. The paper does not answer the question of how
to determine if a node failed, it assumes a failure when the network connection to
a node is prematurely closed. In general, the presented research goes in line with
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further development of the virtual supercomputer concept coined and evaluated
in [4, 12,13].

3 Methods

3.1 Model of computation

To infer fault tolerance model which is suitable for big data applications we use
bulk-synchronous parallel model [28] as the basis. This model assumes that a
parallel programme is composed of several sequential steps that are internally
parallel, and global synchronisation of all parallel processes occurs after each
step. In our model all sequential steps are pipelined where it is possible. The
evolution of the computational model is described as follows.

Given a programme that is sequential and large enough to be decomposed
into several sequential steps, the simplest way to make it run faster is to exploit
data parallelism. Usually it means finding multi-dimensional arrays and loops
that access their elements and trying to make them parallel. After transforming
several loops the programme will still have the same number of sequential steps,
but every step will (ideally) be internally parallel.

After that the only possibility to speedup the programme is to overlap ex-
ecution of code blocks that work with different hardware devices. The most
common pattern is to overlap computation with network I/O or disk I/O. This
approach makes sense because all devices operate with little synchronisation,
and issuing commands in parallel makes the whole programme perform better.
This behaviour can be achieved by allocating a separate task queue for each
device and submitting tasks to these queues asynchronously with execution of
the main thread. So, after this optimisation, the programme will be composed of
several steps chained into the pipeline, each step is implemented as a task queue
for a particular device.

Pipelining of otherwise sequential steps is beneficial not only for code access-
ing different devices, but for code different branches of which are suitable for
execution by multiple hardware threads of the same core, i.e. branches accessing
different regions of memory or performing mixed arithmetic (floating point and
integer). In other words, code branches which use different modules of processor
are good candidates to run in parallel on a processor core with multiple hardware
threads.

Even though pipelining may not add parallelism for a programme that uses
only one input file (or a set of input parameters), it adds parallelism when the
programme can process multiple input files: each input generates tasks which
travel through the whole pipeline in parallel with tasks generated by other inputs.
With a pipeline an array of files is processed in parallel by the same set of
resources allocated for a batch job, and possibly with greater efficiency for busy
HPC clusters compared to executing a separate job for each input file, because
the time that each subsequent job after the first spends in a queue is eliminated.
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Computational model with a pipeline can be seen as bulk-asynchronous model,
because of the parallel nature of otherwise sequential execution steps. This model
is the basis of the fault-tolerance model developed here.

3.2 Fail over model

Although, fault-tolerance and high-availability are different terms, in essence
they describe the same property—an ability of a system to switch processing
from a failed component to its live spare or backup component. In case of fault-
tolerance it is the ability to switch from a failed slave node to a spare one, i.e.
to repeat computation step on a healthy slave node. In case of high-availability
it is the ability to switch from a failed master node to a backup node with
full restoration of execution state. These are the core abilities that constitute
distributed system’s ability to fail over.

The key feature that is missing in the current parallel programming and big
data processing technologies is a possibility to specify hierarchical dependencies
between parallel tasks. When one has such dependency, it is trivial to determine
which task should be responsible for re-executing a failed task on a healthy
node. To re-execute the root of the hierarchy, a backup root task is created and
executed on a different node. There exists a number of engines that are capable
of executing directed acyclic graphs of tasks in parallel [1, 19], but graphs are
not good to infer master-slave relationship between tasks, because a node in the
graph may have multiple parent nodes.

3.3 Programming model

This work is based on the results of previous research: In [15, 16] we developed
an algorithm that allows to build a tree hierarchy from strictly ordered set of
cluster nodes. The sole purpose of this hierarchy is to make a cluster more fault-
tolerant by introducing multiple master nodes. If a master node fails, then its
subordinates try to connect to another node from the same or higher level of the
hierarchy. If there is no such node, one of the subordinates becomes the master.
In [14] we developed a framework for big data processing without fault tolerance,
and here this framework is combined with fault-tolerance techniques described
in this paper.

Each programme that runs on top of the tree hierarchy is composed of com-
putational kernels—objects that contain data and code to process it. To exploit
parallelism a kernel may create arbitrary number of subordinate kernels which
are automatically spread first across available processor cores, second across sub-
ordinate nodes in the tree hierarchy. The programme is itself a kernel (without a
parent as it is executed by a user), which either solves the problem sequentially
on its own or creates subordinate kernels to solve it in parallel.

In contrast to HPC applications, in big data applications it is inefficient to
run computational kernels on arbitrary chosen nodes. More practical approach
is to bind every kernel to a file location in a parallel file system and transfer
the kernel to that location before processing the file. That way expensive data
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transfer is eliminated, and the file is always read from a local drive. This approach
is more deterministic compared to existing ones, e.g. MapReduce framework runs
jobs on nodes that are “close” to the file location, but not necessarily the exact
node where the file is located [7]. However, this approach does not come without
disadvantages: scalability of a big data application is limited by the strategy that
was employed to distribute its input files across cluster nodes. The more nodes
used to store input files, the more read performance is achieved. The advantage
of our approach is that the I/O performance is more predictable, than one of
hybrid approach with streaming files over the network.

3.4 Handling master node failures

A possible way of handling a failure of a node where the first kernel is located (a
master node) is to replicate this kernel to a backup node, and make all updates
to its state propagate to the backup node by means of a distributed transaction.
This approach requires synchronisation between all nodes that execute subordi-
nates of the first kernel and the node with the first kernel itself. When a node
with the first kernel goes offline, the nodes with subordinate kernels must know
what node is the backup one. However, if the backup node also goes offline in
the middle of execution of some subordinate kernel, then it is impossible for
this kernel to discover the next backup node to return to, because this kernel
has not discovered the unavailability of the master node yet. One can think
of a consensus-based algorithm to ensure that subordinate kernels always know
where the backup node is, but distributed consensus algorithms do not scale well
to the large number of nodes and they are not reliable [11]. So, consensus-based
approach does not play well with asynchronous nature of computational kernels
as it may inhibit scalability of a parallel programme.

Fortunately, the first kernel usually does not perform operations in parallel,
it is rather sequentially launches execution steps one by one, so it has only
one subordinate at a time. Such behaviour is described by bulk-synchronous
parallel programming model, in the framework of which a programme consists
of sequential supersteps which are internally parallel [28]. Keeping this in mind,
we can simplify synchronisation of its state: we can send the first kernel along
with its subordinate to the subordinate node. When the node with the first kernel
fails, its copy receives its subordinate, and no execution time is lost. When the
node with its copy fails, its subordinate is rescheduled on some other node, and
in the worst case a whole step of computation is lost.

Described approach works only for kernels that do not have a parent and
have only one subordinate at a time, and act similar to manually triggered
checkpoints. The advantage is that they

– save results after each sequential step when memory footprint of a pro-
gramme is low,

– they save only relevant data,
– and they use memory of a subordinate node instead of stable storage.
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4 Results

Master node fail over technique is evaluated on the example of wave energy
spectra processing application. This programme uses NDBC dataset [24] to re-
construct frequency-directional spectra from wave rider buoy measurements and
compute variance. Each spectrum is reconstructed from five variables using the
following formula [9].

S(ω, θ) =
1

π

[
1

2
+ r1 cos (θ − α1) + r2 sin (2 (θ − α2))

]
S0(ω).

Here ω denotes frequency, θ is wave direction, r1,2 and α1,2 are parameters of
spectrum decomposition and S0 is non-directional spectrum; r1,2, α1,2 and S0

are acquired through measurements. Properties of the dataset which is used in
evaluation are listed in Table 1.

Table 1. NDBC dataset properties.

Dataset size 144MB
Dataset size (uncompressed) 770MB
No. of wave stations 24
Time span 3 years (2010–2012)
Total no. of spectra 445422

The algorithm of processing spectra is as follows. First, current directory is
recursively scanned for input files. Data for all buoys is distributed across clus-
ter nodes and each buoy’s data processing is distributed across processor cores
of a node. Processing begins with joining corresponding measurements for each
spectrum variables into a tuple, then for each tuple frequency-directional spec-
trum is reconstructed and its variance is computed. Results are gradually copied
back to the machine where application was executed and when the processing is
complete the programme terminates.

Table 2. Test platform configuration.

CPU Intel Xeon E5440, 2.83GHz
RAM 4Gb
HDD ST3250310NS, 7200rpm
No. of nodes 12
No. of CPU cores per node 8

In a series of test runs we benchmarked performance of the application in
the presence of different types of failures:
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– failure of a master node (a node where the first kernel is run),
– failure of a slave node (a node where spectra from a particular station are

reconstructed) and
– failure of a backup node (a node where the first kernel is copied).

A tree hierarchy with sufficiently large fan-out value was chosen to make all
cluster nodes connect directly to the first one so that only one master node exists
in the cluster. In each run the first kernel was launched on a different node to
make mapping of kernel hierarchy to the tree hierarchy optimal. A victim node
was made offline after a fixed amount of time early after the programme start.
To make up for the node failure all data files have replicas stored on different
cluster nodes. All relevant parameters are summarised in Table 3 (here “root”
and “leaf” refer to a node in the tree hierarchy). The results of these runs were
compared to the run without node failures (Figure 1).

Table 3. Benchmark parameters.

Experiment no. Master node Victim node Time to offline, s

1 root
2 root leaf 30
3 leaf leaf 30
4 leaf root 30

The benchmark showed that only a backup node failure results in significant
performance penalty, in all other cases the performance is roughly equals to the
one without failures but with the number of nodes minus one. It happens because
a backup node not only stores the copy of the state of the current computation
step but executes this step in parallel with other subordinate nodes. So, when
a backup node fails, the master node executes the whole step once again on
arbitrarily chosen healthy subordinate node.

5 Discussion

Described algorithm guarantees to handle one failure per computational step,
more failures can be tolerated if they do not affect the master node. The system
handles simultaneous failure of all subordinate nodes, however, if both master
and backup nodes fail, there is no chance for an application to survive. In this
case the state of the current computation step is lost, and the only way to restore
it is to restart the application.

Computational kernels are means of abstraction that decouple distributed
application from physical hardware: it does not matter how many nodes are
online for an application to run successfully. Computational kernels eliminate the
need to allocate a physical backup node to make master node highly-available,
with computational kernels approach any node can act as a backup one. Finally,
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Fig. 1. Performance of spectrum processing application in the presence of different
types of node failures.

computational kernels can handle subordinate node failures in a way that is
transparent to a programmer.

The disadvantage of this approach is evident: there is no way of making exist-
ing middleware highly-available without rewriting their source code. Although,
our programming framework is lightweight, it is not easy to map architecture of
existing middleware systems to it: most systems are developed keeping in mind
static assignment of server/client roles, which is not easy to make dynamic.
Hopefully, our approach will simplify design of future middleware systems.

6 Conclusion

Dynamic roles assignment is beneficial for Big Data applications and distributed
systems in general. It decouples architecture of a distributed system from under-
lying hardware as much as possible, providing highly-available service on top of
varying number of physical machines. As much as virtualisation simplifies man-
agement and administration of a computer cluster, our approach may simplify
development of reliable distributed applications which run on top of the cluster.
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