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Abstract. Modern architectures of data acquisition and processing of-
ten consider low-cost and low-power devices that can be bound together
to form a distributed infrastructure. In this paper we overview possi-
bilities to organize a distributed computing testbed based on micro-
computers similar to Raspberry Pi and Intel Edison. The goal of the
research is to investigate and develop a scheduler for orchestrating dis-
tributed data processing and general purpose computations on such un-
reliable and resource-constrained hardware. Also we consider integration
of the scheduler with well-known distributed data processing framework
Apache Spark. We outline the project carried out in collaboration with
Siemens LLC to compare different configurations of the hardware and
software deployment and evaluate performance and applicability of the
tools to the testbed.
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1 Introduction

The problem of building distributed computing infrastructures for data collec-
tion and processing has been around for many years. One of the well-known
technologies for building large-scale computing infrastructures is grid comput-
ing. It provides means to connect heterogeneous, dynamic resources into a single
metacomputer. However, being focused on high-performance computing systems,
grid technologies do not suit well other classes of basic hardware. One of such
examples are low-performance, low-cost unreliable microcomputers similar to
Raspberry Pi or Intel Edison, sometimes also called System-on-Chip (SoC) de-
vices. To be able to execute distributed applications over a set of such devices
extensive fault-tolerance support is needed along with low resource usage profile
of the middleware.

In this paper we discuss an approach to orchestrate distributed computing
and data processing on microcomputers with help of custom scheduler focused on
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fault tolerance and dynamic rescheduling of computational kernels that represent
the application. This scheduler, which is named Ascheduler, provides its own low-
level API to create and manage computational kernels. Currently the Ascheduler
is a closed-source project built on the ideas and approaches presented in [5–7].

In addition, the scheduler has been integrated into Apache Spark [1] data pro-
cessing framework instead of the default scheduler used by Spark. This opened
possibilities to use a wide range of existing Spark-based programs on the under-
lying microcomputer infrastructure controlled by the Ascheduler.

The project aimed to solve the following main tasks:

– Develop automatic failover and high-availability mechanisms for computer
system.

– Develop automatic elasticity mechanism for computer system.
– Enable adjusting application algorithm precision taking into account current

number of healthy cluster nodes.
– Adjust load distribution taking into account actual and heterogeneous mon-

itoring data from cluster nodes.
– Adjust micro-kernel execution order to minimise peak memory footprint of

cluster nodes.

The task of data processing on resource-constrained and unreliable hardware
emerges within the framework of sensor real-time near-field data processing.
The implementation of the system, allowing to carry out the processing in the
field, will allow one to quickly respond to sudden changes in sensor readings
and reduce the time of decision-making. The implementation of general-purpose
computations in such a system allows one to use the same hardware and software
system for a diverse high-tech equipment.

The paper is organised as follows: Section 2 presents an overview of related
work on using microcomputers for building distributed data processing systems
with Hadoop and Spark; Section 3 presents the architecture of our solution;
Section 4 explains how Ascheduler is integrated with Apache Spark; Section 5
presents experimental evaluation; Section 6 discusses the results and Section 7
concludes the paper.

2 Related work

There are a number of publications which report on successful deployments of
Hadoop and Spark on various resource-constrained platforms:

– Hadoop on Raspberry Pi [3];
– Hadoop on Raspberry Pi [4];
– Spark on Raspberry Pi [8];
– Spark on Cubieboard [9].

These papers outline common problems and solutions when running Hadoop/Spark
on resource-constrained systems. These are:
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– large memory footprint problems,
– too slow/resource-hungry Java VM,
– overheating problems.

These works do not report any particular problem with Java on resource-
constrained platforms and all of them use standard JRE. Neither they report
any overheating or large memory footprint problems (although, Raspberry Pi,
for example, does not have a cooler). However, all the papers deal with system
boards in laboratory or similar environments, where these problems are non-
existent. Additionally, the authors run only simple tests to demonstrate that
the system is working, and no production-grade application is studied nor large-
scale performance tests performed. Using Java and standard JRE for scheduler
development seems rational for simple workloads, however, large workloads may
require additional boards to cope with memory footprint or boost processing
power.

3 Architecture

3.1 Architecture overview

The core concepts and architecture used for the implementation of Ascheduler
are described in detail in [5–7]. Here we summarise the most important aspects
relevant to the current testbed implementation.

To solve the problem of fault-tolerance of slave cluster nodes we use a simple
restart: try to re-execute the task from the failed node on a healthy one. To
solve the problem of high-availability of the master node we use replication:
copy minimum necessary amount of state to restart the task on the backup
node. When the master node fails, its role is delegated to the backup node, and
task execution continues. When the backup node fails, the master node restarts
the current stage of the task. The most important feature of the approach used
in Ascheduler is to ensure master node fault-tolerance without any external
controller (e.g. Zookeeper in Hadoop/Spark ecosystem).

Cluster nodes are combined into a tree hierarchy that is used to uniquely
determine the master, backup and slave nodes roles without a conflict [7].

Each node may perform any combination of roles at the same time, but
can not be both master and backup. The initial construction of the hierarchy
is carried out automatically, and the node’s position in the hierarchy is solely
determined by the position of its IP-addresses in a subnet.

When any cluster node fails or a new one joins the cluster, the hierarchy is
rebuilt automatically.

The elasticity of the computer system is provided by dividing each task on a
large number of subtasks (called micro-kernels), between which hierarchical links
are established. All micro-kernels are processed asynchronously, which makes it
possible to distribute them on the cluster nodes and processor cores, balancing
the load. Typically, the amount of micro-kernels in a problem exceeds the to-
tal number of nodes/cores in the cluster, so the order of their processing can
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be optimised so as to minimise memory footprint, or to minimise power con-
sumption by grouping all of the micro-kernels on a small number of nodes, or to
ensure the maximum speed of task execution, distributing micro-kernels across
all nodes in the cluster. If the cluster capacity is not enough to handle the current
data flow/volume of data, micro-kernel pools on the cluster nodes overflow, and
excessive kernels may be transferred to a more powerful remote server/cluster.
The amount of data, that must be replicated to the backup node to ensure the
high-availability, equals to the amount of RAM occupied by a kernel, and can
be controlled by the programmer.

Figure 1 shows the schematic view of the system.

Fig. 1. Schematic view.

3.2 Hardware

Microcomputers used in the testbed:

– Raspberry Pi 3 Model B (2 pieces)
– Raspberry Pi 1
– Intel Edison
– Orange Pi (2 pieces)
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3.3 Scheduler core and API

The Ascheduler has layered architecture, as discussed in [5–7]:

– Physical layer. Consists of nodes and direct/routed network links.
– Daemon layer. Consists of daemon processes residing on cluster nodes and

hierarchical (master/slave) links between them.
– Kernel layer. Consists of kernels and hierarchical (parent/child) links be-

tween them.

Master and slave roles are dynamically assigned to daemon processes, any
physical cluster node may become master or slave. Dynamic reassignment uses
leader election algorithm that does not require periodic broadcasting of messages,
and the role is derived from node’s IP address. Detailed explanation of the
algorithm is provided in [5].

Software implementation of Ascheduler consists of three main components
(Fig. 2):

– Task scheduler core (which is used to compose distributed applications).
– Scheduler daemon based on the core.
– A driver which integrates scheduler into Apache Spark.

Fig. 2. Scheduler components.

Task scheduler core. The core provides classes and methods to simplify de-
velopment of distributed applications and middleware. The main focus of this
package is to make distributed application resilient to failures, i.e. make it fault
tolerant and highly available, and do it transparently to a programmer.

All classes are divided into two layers: the lower layer consists of classes for
single node applications, and the upper layer consists of classes for applications
that run on an arbitrary number of nodes. There are two kinds of tightly coupled
entities in the package — kernels and pipelines — which are used together to
compose a programme. Kernels implement control flow logic in their act and
react methods and store the state of the current control flow branch. Both
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logic and state are implemented by a programmer. In act method some func-
tion is either sequentially computed or decomposed into subtasks (represented
by another set of kernels) which are subsequently sent to a pipeline. In react

method subordinate kernels that returned from the pipeline are processed by
their parent. Calls to act and react methods are asynchronous and are made
within threads spawned by a pipeline. For each kernel act is called only once,
and for multiple kernels the calls are done in parallel to each other, whereas
react method is called once for each subordinate kernel, and all the calls are
made in the same thread to prevent race conditions (for different parent kernels
different threads may be used).

Pipelines implement asynchronous calls to act and react, and try to make
as many parallel calls as possible considering concurrency of the platform (no.
of cores per node and no. of nodes in a cluster). A pipeline consists of a kernel
pool, which contains all the subordinate kernels sent by their parents, and a
thread pool that processes kernels in accordance with rules outlined in the pre-
vious paragraph. A separate pipeline exists for each compute device: There are
pipelines for parallel processing, schedule-based processing (periodic and delayed
tasks), and a proxy pipeline for processing kernels on other cluster nodes.

In principle, kernels and pipelines machinery reflect the one of procedures and
call stacks, with the advantage that kernel methods are called asynchronously
and in parallel to each other. The stack, which ordinarily stores local variables,
is modelled by fields of a kernel. The sequence of processor instructions before
nested procedure calls is modelled by act method, and sequence of processor
instructions after the calls is modelled by react method. The procedure calls
themselves are modelled by constructing and sending subordinate kernels to
the pipeline. Two methods are necessary because calls are asynchronous and
one must wait before subordinate kernels complete their work. Pipelines allow
circumventing active wait, and call correct kernel methods by analysing their
internal state.

Scheduler daemon. The purpose of the daemon is to accept tasks from the
driver and launch applications in child processes to run these tasks. Each task is
wrapped in a kernel, which is used to create a new child process. All subsequent
tasks are sent to the newly created process via shared memory pages, and results
are sent back via the same interface. The same protocol is used to exchange
kernels between parent and child processes and between different cluster nodes.
This allows scheduler daemon to distribute kernels between cluster nodes without
knowing exact Java classes that implement kernel interface.

Scheduler daemon is a thin layer on top of the core classes which adds a set
of configuration options, automatically discovers other daemons over local area
network and launches child processes for each application to process tasks from
the driver.

Apache Spark integration driver. The purpose of the driver is to send
Apache Spark tasks to scheduler daemon for execution. The driver connects to
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an instance of the scheduler daemon via its own protocol (the same protocol
that is used to send kernels), wraps each task in a kernel and sends them to
the daemon. The driver is implemented using the same set of core classes. This
allows testing the driver without a scheduler (replace integration tests with unit
tests) as well as using the driver without a scheduler, i.e. process all kernels
locally, on the same node where Spark client runs.

Fault tolerance and high availability. The scheduler has fault tolerance and
high availability built into its low-level core API. Every failed kernel is restarted
on healthy node or on its parent node, however, failure is detected only for kernels
that are sent from one node to another (local kernels are not considered). High
availability is provided by replicating master kernel to a subordinate node. When
any of the replicas fails, another one is used in place. Detailed explanation of
the fail over algorithm is provided in [7].

Security. Scheduler driver is able to communicate with scheduler daemons in
local area network. Inter-daemon messaging is not encrypted or signed in any
way, assuming that local area network is secure. There is also no protection
from Internet “noise”. Submission of the task to a remote cluster can be done
via SSH (Secure Shell) connection/tunnel which is de facto standard way of
communication between Linux/UNIX servers. So, scheduler security is based on
the assumption that it is deployed in secure local area network. Every job is run
from the same user, as there is no portable way to switch process owner in Java.

3.4 Ascheduler integration with Spark

Starting with the version 2.0, custom schedulers can be integrated in Spark via
implementation of three interfaces. For better understanding of Spark classes
and their interconnections please refer to Mastering Apache Spark 2.0 [10] and
source code of Spark classes available at https://github.com/apache/spark,
as sometimes there are useful information in code comments. Class diagram of
all implemented Apache Spark interfaces as well as wrapper classes is shown in
figure 3.

3.5 Communication

The aim of the project was to build a wireless microcomputer cluster. To create
a Wi-Fi based ad hoc network mesh we have chosen a protocol with a driver
and API: B.A.T.M.A.N. (Better Approach To Mobile Adhoc Networking mesh
protocol) [2]. B.A.T.M.A.N. helps organizing and routing wireless ad-hoc net-
works that are unstructured, dynamically change their topology, and are based
on an inherently unreliable medium. Additionally, B.A.T.M.A.N. provides means
to collect the knowledge about the network topology, state and quality of the
links — this information is used by Ascheduler to make scheduling decisions
aware of physical network topology and links.
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Ascheduler classesApache Spark classes

<<interface>>

TaskScheduler

+submitTasks(tasks:TaskSet): Unit
+setDAGScheduler(dagScheduler:DAGScheduler)
+start(): Unit
+stop(): Unit
+defaultParallelism(): Int
+applicationId(): String
+applicationAttemptId(): Option[String]
+rootPool(): Pool
+schedulingMode(): SchedulingMode
+postStartHook(): Unit
+cancelTasks(stageId:Int,interruptThread:Boolean): Unit
+executorHeartbeatReceived(execId:String,
accumUpdates:Array[(Long,
Seq[AccumulatorV2[_,
_]])],blockManagerId:BlockManagerId): Boolean

<<interface>>

SchedulerBackend

+start(): Unit

+isReady(): Boolean

+stop(): Unit
+defaultParallelism(): Int

+applicationId(): String

+applicationAttemptId(): Option[String]

+getDriverLogUrls(): Option[Map[String, String]]

+reviveOffers(): Unit

+killTask(taskId:Long,executorId:String,

interruptThread:Boolean): Unit

AschedulerClusterManager

AschedulerBackend

-sparkContext: SparkContext
-masterURL: String

Ascheduler

-dagScheduler: DAGScheduler
-sparkContext: SparkContext
-masterURL: String

-backend: AschedulerBackend

DAGScheduler

<<interface>>

Task

<<wrapper class>>

TaskKernel

-task: Task

<<interface>>

TaskSet

<<wrapper class>>

TaskKernel

-taskSet: TaskSet

<<interface>>

ExternalClusterManager

+canCreate(masterURL:String): Boolean
+createTaskScheduler(sc:SparkContext,masterURL:String): TaskScheduler
+createSchedulerBackend(sc:SparkContext,
masterURL:String,
scheduler:TaskScheduler): SchedulerBackend
+initialize(scheduler:TaskScheduler,backend:SchedulerBackend): Unit

Fig. 3. Apache Spark integration
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4 Creating Apache Spark applications for running with
Ascheduler

Apache Spark connects to Ascheduler via an implementation of interfaces for cus-
tom schedulers. Ascheduler works with Spark version 2.0.2 only. Since Ascheduler
integration required access to classes and interfaces considered private in Apache
Spark, work of Ascheduler with another versions of Spark is not guaranteed.

Ascheduler integration with Spark has been implemented in a way that al-
lows using Spark functionality disregarding the choice of the scheduler. If Spark
is used with several schedulers, the user might want to explicitly choose the
scheduling mode. It can be done by creating SparkContext from SparkConf

with method setMaster(masterURL) invoked. Here masterURL corresponds to
particular scheduler with parameters. For Ascheduler string value ascheduler

could be used for the cluster mode and ascheduler-local — for the local mode.
Spark driver for Ascheduler has more masterURL options, because of some hard-
coded Spark limitations that have to be bypassed:

– local-ascheduler for using cluster Ascheduler from Spark shell
– local-ascheduler-local for using local Ascheduler from Spark shell
– local[O O]-ascheduler-local for using Spark Streaming with Ascheduler

in local version.

Spark programs running on Ascheduler were tested both on local and cluster
versions. Spark with Ascheduler supports a wide range of standard operations
and functions, such as:

– running both in Spark shell and as standalone applications;
– operating on Resilient Distributed Datasets (RDDs): mapping, reducing,

grouping operations;
– partition-wise transformations on RRDs: controllable re-partitioning, shuf-

fling, persisting RDDs, calling functions for partitions;
– Multi-RDD operations: union, subtracting, zipping one RDD with another;
– Broadcasting shared variables among executors;
– Accumulators and task metrics based on them;
– Spark Streaming with rerunning nodes (master included) in case of failure.

The work of Spark with Ascheduler and any of Spark packages except Spark
Streaming is not guaranteed. With those exceptions, any Spark application is
expected to work with Ascheduler as a task scheduling base.

5 Evaluation

The application used for evaluation is an example of real-time micro-batch pro-
cessing using Ascheduler and Apache Spark. The application consists of two enti-
ties: a periodic signal generator and its processor. The generator creates batches
of values of a superposition of harmonic signals and sends them for processing
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via a network socket and for output via a websocket. The processor receives the
batches from the raw socket, applies adaptive Fast Fourier Transform (FFT) on
the signal and sends the result into output via a WebSocket. Both outputs are
available on the system monitoring page.

In this experiment we benchmark two implementations of FFT demo appli-
cation on two platforms using two schedulers (fig. 4). The first implementation is
based on Spark Streaming API, the second is based on Ascheduler API. The first
platform (left column) is Intel Edison, the second (right column) is commodity
Intel Core i5. The first scheduler is Spark Standalone in local mode, the second
scheduler is Ascheduler in local mode. Cluster versions are not benchmarked in
this experiment. In each run demo application computes spectrum of 25KHz sig-
nal in real time for 5 minutes. Time of each spectrum computation is recorded
as a point in a graph. Since demo application automatically downsamples in-
put signal when processing is slow, we measure overall throughput by dividing
the number of processed points by time taken to process them. The results are
presented in fig. 4 for each run and summarised in table 1.

Platform Scheduler API Average throughput, points/s

Intel Edison Spark Spark 375
Intel Edison Ascheduler Spark 995
Intel Edison Ascheduler Ascheduler 517 676
Intel Core i5-4200H Spark Spark 487 594
Intel Core i5-4200H Ascheduler Spark 511 618
Intel Core i5-4200H Ascheduler Ascheduler 5 046 540

Table 1. Comparing performance of Ascheduler and Spark schedulers.

6 Discussion

Graphs show that Spark API is incapable of processing 25KHz input signal on
Intel Edison platform. Ascheduler scheduler outperforms Spark standalone by
a factor of 3 on Intel Edison but still more performance is needed to process
25KHz signal. Direct use of Ashcheduler API on Intel Edison finally solves the
problem, allowing to process 500KHz input signal. On commodity Intel Core i5
platform there is no significant difference between performance of Spark stan-
dalone scheduler and Ascheduler when using Spark API, however, direct use of
Ascheduler API gives tenfold increase in performance: it is capable of processing
5GHz input signal.

7 Conclusions

The following was achieved as the final outcomes of the project:
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– Ascheduler — fault-tolerant scheduler implemented in Java, running stan-
dalone or with Apache Spark (with Spark Streaming supported)

– Master-node fault tolerance is supported by Ascheduler.
– Dynamic resource discovery, composition and re-configuration of distributed

cluster.
– Optimised for running on unreliable and resource-constrained microcom-

puter hardware.
– Running in heterogeneous and dynamic hardware and networking environ-

ment.
– Integrated microcomputer and cluster monitoring API.
– Transparent monitoring and visualization with web-based UI.
– Distributed FFT application (with GPGPU support if available) with stream-

ing input and dynamic graphical output.
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