Acceleration of computing and visualization
processes with OpenCL for standing sea wave
simulation model

Andrei Ivashchenko, Alexey Belezeko, Ivan Gankevich, Vladimir Korkhov, and
Nataliia Kulabukhova

Saint Petersburg State University,

Dept. of Computer Modeling and Multiprocessor Systems,
Universitetskii prospekt 35, Petergof, Saint Petersburg, Russia 198504
aiivashchenko@cc.spbu.ru, alexey.belezeko@gmail.com, i.gankevich@spbu.ru,
v.korkhov@spbu.ru, n.kulabukhova@spbu.ru

Abstract. In this paper we highlight one of the possible acceleration
approaches for the standing wave model simulation model with the use
of OpenCL framework for GPGPU computations. We provide a descrip-
tion of the waves mathematical model, an explanation for the technology
selection, as well as the identification of the algorithm part that can be
accelerated. The text also contains a description of solutions performance
evaluation stage being compared with CPU-only program. The influence
of OpenCL usage for improvements in rendering process is also shown
here. Finally, possible ways of application improvement and further de-
velopment are also considered.

Keywords: Computing, Mathematical modelling, OpenCL, OpenGL,
Autoregressive process, Moving average process, Velocity potential field,
Visualisation, Real-time simulation

1 Introduction

In most cases, visualisation of scientific data obtained during simulation or com-
putation process is carried out separately, after all the stages of calculation are
completed. This fact is connected with a rather large number of factors: com-
putation process could be executed with CPU-only nodes (however, this should
not be considered as a problem since the Mesa 3D graphics library exists); the
goal to complete a task as fast as possible could have greater priority, thus, all
available resources would be used for this; data could be just difficult to process
and synchronise during in runtime, if such a scenario was not assumed by the
software solution.

However, on the other hand, during the computation process, especially the
long one, there is a need to monitor for performed operations and obtained
results. In the case where such a control is possible the calculations could be
suspended and the necessary tweaks made with a timely response. This kind

2 A. Tvashchenko, A. Belezeko, I. Gankevich, V. Korkhov, N. Kulabukhova

of action may also be needed while debugging the program or testing a new
mathematical model. Thus, in this article we will consider the possibility of
interactive control organisation for calculations with a terms of visualisation,
which will be performed using the OpenGL API.

Another possible scenario of this approach is an interaction with simulated
objects and processes in real-time. So, you can change the initial conditions, add
new environmental parameters and observe the system’s response immediately
from the moment of the effect’s influence beginning to its end. In the frame-
work of ocean wave simulation this has educational value, as the effect of every
change in the input parameter is immediately visible. In addition to this, in-
stantaneous visualisation of ocean wavy surface brings simulation to a new level,
where dynamically changing parameters to arbitrary values within predefined
ranges allows to visually verify the model and its numerical code.

For the experiment we have chosen an autoregressive model of standing waves
within framework of which we have accelerated velocity potential field compu-
tation with the usage of GPGPU technology through the OpenCL framework.
Since, data structures that are needed for visualisation are already stored in
GPU memory, we take into account that fact and remove unnecessary copying
between host and device using OpenGL/OpenCL interoperability API.

2 Related work

The idea of mixing various computing APIs is not a fresh one, also including for
OpenGL/OpenCL interoperability. Nvidia has announced the support for this
technology in the 2011, and since then we have been able to observe the related
solutions appeared on the market.

The idea of compute API usage was widely spread and adopted by enter-
tainment industry, especially in game development sphere. Ever since the popu-
larisation of the PhysX engine, which uses the capabilities of graphics cards to
simulate a certain set of physical phenomena, it was clear that such a technology
will find a place to be applied in the future [9]. So, for today, almost all heavy
dynamic particle systems you can met are using one of the general compute APIs
[15].

Another area of general usage where this technology was introduced is a com-
puter vision. Industry standard library OpenCV has a special OCL module orig-
inally provided by AMD, which enables the acceleration for various algorithms,
including ones for matrix transformations, image filtering and processing, object
detection and many more [3].

However, the situation with scientific calculation is absolutely different. Un-
like the entertainment software where the vast of the scene contents in most cases
are generated in advance and the number of processes is strictly limited to ones
affecting the environment at the current moment, for the scientific simulations
almost everything should be calculated from scratch based only on given initial
conditions, including the geometry (if it is meant by the process), the particle
system, visual effects, etc. In addition, simulations by themselves are much more

Acceleration of computing and visualization 3

complicated, and the optimisation for dynamically forming geometric structures
is quite difficult to perform.

There is a way to achieve more efficient usage of resources while performing
the visualisation of the computational experiment results, which are involving
GPGPU to speed up the computation, and it is directly related to the accelerator
exploitation. Thus, when graphics cards are used to compute, it is obvious that
the data is already allocated on its memory. So, if there is a way to transform
the data to the format that can be used by the graphic API, and also the way to
transfer it between the compute and graphics contexts, then we will not have to
copy it from the memory of GPU to the RAM and vice versa. Thus, the usage
of OpenCL, CUDA, or any other compute API can boost the performance not
only for the calculations themselves, but also for the results rendering. Thus, we
have reviewed several papers which are referring to the stated problem to get a
glance whether this approach could be used for the optimisation in our case.

One of the most interesting cases was shown by the research group from
Boston Northeastern University [14]. The OpenCL/OpenGL interoperability was
applied to five completely different applications related to the different study
areas. For example, one of them is a Material Fault Detection program used for
fault detection using wave propagation in anisotropic materials, which produces
material layer surfaces. They have used a slot-based rendering technique, which
means that data is precomputed for several frames in advance before passing it
to the rendering context. As a result, they have been able to obtain 2.2 more
frames in average with discrete AMD GPUs Radeon 7770 and Radeon 7970 and
1.9 more with AMD Fusion A8 APU.

As for the image processing, we can refer to [12], where the interop technique
is used for panorama video image stitching. According to the provided metrics
the best result is achieved with involving two buffers for both OpenCL computa-
tions and OpenGL rendering, and it is 12 times faster compared to the original
CPU based solution. The paper is also showing that the proposed solution is
scaled really well when the additional image capturing devices are attached to
the system. We should also notice an another closely related case presented by
Samsung at SIGGRAPH’13, which talks in general about real time video stream
processing on mobile platforms captured by camera module with the usage of
OpenCL and OpenGL ES interoperability [4].

All the examples of GPGPU API interoperability mentioned above are prov-
ing that the proposed approach could be applied for the various set of problems
to achieve the significant results in optimisation of calculations and visualisation
itself. However, it should be said that the following solutions has been applied
for the particular cases and not showing any general solution, which could be
treated as a specificity of the interoperability method. During the study we will
try to point out the major improvements made by research groups to complete
our solution in a most optimal way.

4 A. Tvashchenko, A. Belezeko, I. Gankevich, V. Korkhov, N. Kulabukhova
3 Compute and graphics contexts interoperability

OpenGL itself does not contain any mechanisms that could help to organise the
interaction between OpenGL and OpenCL. However, despite the fact that the
specified functionality is not available, OpenGL supports the data and message
exchange between its own contexts, the fundamental principles of which are laid
in CL/GL interoperability [1]. Thus, it would be expediently to consider on this
question as it represents the basics we need to understand.

First, the graphics card, which is intended to be used for computation, should
be checked for OpenCL shared context mode support. To find this out, the
clinfo command line utility should be run on the target machine. If the required
functionality is supported the c1_khr_gl_sharing option will be specified in the
“Device Extensions” section [10]. This extension is provided by Khronos group
and it is responsible for the interaction between APIs.

The following extension contains all necessary functions for OpenCL, which
are defined in c¢1_gl.h header file. In general, they could be divided into three
main groups:

— Memory broker functions — acquire and release allocated memory areas
represented with OpenGL objects;
— Object transformation functions — create an OpenCL representation for

OpenGL object;
— Info functions — provide various information about OpenGL context, like
associated devices, object description, etc.

The next thing that should be discussed is data types, which could be driven
by the interoperability API. This issue has been partially reviewed in [2] at
the discussion about graphics API parallelization. Basically, all OpenGL object
are represented with two groups. The first one is a Container Object group the
specificity of which lies in the fact that they can not be shared between contexts
since they contain references to other objects, and GL standard disallow transfer
for objects of that type, i.e. they are not a point of our interest. Another group
contains regular Objects, which could be shared between context without any
limitations. Since we need to share only the data for now, we should take a
look for the Buffer Object, which could actually store an array of unformatted
memory allocated by the OpenGL context. Among all Buffer Objects, for the
our particular case the Vertex Buffer Object should be used at first to transfer
the surface representation data.

Due to the fact that graphics unit could proceed with the single context at
once, we will need to manage them manually by alternating them upon request.
Following this way we should be able to build a pipeline as it presented in fig. 1.
Here, both contexts controlled by the main process are basically performing eight
main steps to achieve the goal:

1. First, check whether the cl_khr_gl_sharing is supported by the target
GPGPU.

Acceleration of computing and visualization 5

Creation of shared
OpenGL q Draw vertex
OpenGL context ini group object
P context init (VBO in our case) buffer
Check if q Ask a memlock . Release
a OpenCL Sharing Work with
OpenCL context ¢l_Khr_gl_sharing | | conieyinit an object foyelared memory memory
is supported memory area area

Master thread Owning both CL and GL contexts over time

Fig. 1. OpenGL/OpenCL interoperability pipeline.

2. If the previous step succeeds, initialise both compute and graphics contexts.

3. Next, the shared object is created by OpenGL. It will be used later on to
pass the data back to graphics context.

4. Then, the control passes to the OpenCL context and the object is registered
here for the sharing.

5. Apply a lock for the memory area acquired by the object.

6. Perform all required computations and write the results to the shared mem-
ory.

7. Release the lock and pass control to the graphics API.

8. Finally, process and draw geometry.

4 Standing sea waves simulation model

Our approach to sea waves simulation is based on the autoregressive model—
moving average (ARMA) model of sea waves [6,7]. This model was developed
as an superior alternative to existing linear Longuet—Higgins model. The new
model simulates sea waves without assumptions of linear and small amplitude
wave theories, i.e.

— the model generates waves of arbitrary amplitudes,

— period of wavy surface realisation equals the period of pseudo-random num-
ber generator (PRNG) and

— it requires less number of coefficients to converge compared to Longuet—
Higgins model.

This model allows to generate both propagating and standing sea waves via
moving average and autoregressive process respectively, but for the purpose of
this paper we narrow the discussion to standing waves and autoregressive (AR)
process only.

One implication of turning down the assumptions of linear wave theory is
that it is not possible to use linear velocity potential field computation formulae
for the new wavy surface, as they were derived under the same assumptions. As a
result, the new analytic formula was derived, that determines velocity potential
field under arbitrary wavy sea surface. This formula is particularly suitable for
computation on GPUs:

6 A. Tvashchenko, A. Belezeko, I. Gankevich, V. Korkhov, N. Kulabukhova

— it contains transcendental mathematical functions (hyperbolic cosines and
complex exponents);

— it is computed over large four-dimensional (¢, x, y, z) region;

— it is analytic with no information dependencies between individual data
points in ¢ and z dimensions.

Moreover, for the purpose of the verification of the resulting wavy surface, it is
imperative to visualise the surface and velocity potential velocity field in real-
time as the computation progresses. Performing two simulations at a time with
different velocity potential field formulae allows to spot the difference in com-
puted fields, and to visually compare the size and the shape of regions where the
most wave energy is concentrated.

Within the framework of autoregressive model for standing waves we investi-
gate how GPGPU computations can be used to speed-up velocity potential field
computation and make real-time visualisation of the surface as computation
proceeds.

4.1 Governing equations for 3-dimensional AR process

Three-dimensional autoregressive process is defined by

P1 P2 Pp3

Cijk = Z Z Z Dl nCivt,j—m, k—n€i ik

=0 m=0n=0
where (— wave elevation, & — AR coefficients, ¢ — white noise with Gaus-
sian distribution, (p1,p2,ps) — AR process order, and ®g 90 = 0. The input
parameters are AR process coefficients and order.

The coefficients @ are calculated from ACF via three-dimensional Yule—

Walker equations:

Dy,0,0 Koo, — o2 o Iy oo I,
P K ‘ :
0,0,1 B 0,0,1 o In Iy
. - .) - . 9’
Dp1 ps.ps Kp, po.ps Iy, --- I I

where N = (p1,p2,p3), 02 — white noise variance, and

0 1 D2
ry Iy I Kijo Kiji-- Kijp,
rt . | Kiji Kijo'~ oz
_ J _ %,7,1 1,3,0 .
I, = % 7]"1 — ,

N . . 1

: ST : . - Ko

D2 1 0
iz Iy I3 Kijps -+ Kij1Kijo

Since @¢,0,0 = 0, the first row and column of I" can be eliminated. Matrix I
is block-toeplitz, positive definite and symmetric, hence the system is solved by
Cholesky decomposition. White noise variance is estimated by

P1 P2 P3

2
o; = Koo — E E E D; jkKi j k-

i=0 i=0 k=0

Acceleration of computing and visualization 7

4.2 Three-dimensional velocity potential field

The problem of finding pressure field under wavy sea surface represents inverse
problem of hydrodynamics for incompressible inviscid fluid. System of equations
for it in general case is written as [11]

V2 =0,
Lo o _ b _
¢t+§|v| +g<__;7 Z_C(xayvt)7 (1)
DC:v¢n7 Z:C($,y,t),
where ¢ — velocity potential, (— elevation (z coordinate) of wavy surface,
p — wave pressure, p — fluid density, v = (¢, ¢y, ¢.) — velocity vector, g —
acceleration of gravity, and D — substantial (Lagrange) derivative. The first

equation is called continuity (Laplace) equation, the second one is the conser-
vation of momentum law (the so called dynamic boundary condition); the third
one is kinematic boundary condition for free wavy surface, which states that
rate of change of wavy surface elevation (D() equals to the change of velocity
potential derivative along the wavy surface normal (V¢ - n).

Inverse problem of hydrodynamics consists in solving this system of equations
for ¢. In this formulation dynamic boundary condition becomes explicit formula
to determine pressure field using velocity potential derivatives obtained from the
remaining equations. So, from mathematical point of view inverse problem of
hydrodynamics reduces to Laplace equation with mixed boundary condition —
Robin problem.

Three-dimensional version of (1) is written as

Cbx:z: + ¢yy + ¢zz =0,

G+ Cota+ by = ——2 S

rarg irera

Using Fourier method with some assumptions the equation is solved yielding
formula for ¢:

Q/)y*(bza ZZC(IL',y,t).

cosh (27|k|(z + h)) { Gt }}
27|k| cosh (27[k|h) """\ (ifi(x,y) + if2(z,y) — 1) QQ)

where fi(z,y) = Co/V1+ C + () — G and fa(z,y) = ¢/ 1+ G+ — Gy

o(z,y,2,t) = fw,;{

4.3 Architecture

Incorporation of OpenCL version of velocity potential solver into the existing
source code reduced to an addition of two subclasses (fig. 2):

Realtime_solver a subclass of abstract solver that implements compu-
tation of velocity potential field on GPU, and

8 A. Tvashchenko, A. Belezeko, I. Gankevich, V. Korkhov, N. Kulabukhova

ARMA realtime driver a subclass of control flow object — an object that
defines the sequence of calls to subroutines — that
implements real-time visualisation and stores OpenGL
buffer objects that are shared with the solver. These
objects are shared with the solver only if the solver is
real-time.

The algorithm for computation and visualisation pipeline is presented in alg.1.

Initialise shared OpenCL/OpenGL context.
Generate the first wavy surface realisation time slice.
Compute corresponding velocity potential field.

while not ezited do
Visualise the current slice of wavy surface and velocity field.

Asynchronously compute next wavy surface time slice.
Compute its velocity potential field.
end

Algorithm 1: Main loop of computation and visualisation pipeline.

ARMA_driver Ki—— ARMA _realtime_driver
—=&-generator: Wavy surface_generator -vao: GLuint
-solver: Velocity potential solver -vbo: GLuint
+generate_wavy_surface(): void -ibo: GLuint
+compute_velocity potentials(): void
Velocity_potential_solver Realtime_solver
+solve(surf:Array3D): Array4D -phi: cl::BufferGL
+solve(surf:Array3D): Array4D

'—— Wavy_surface_generator <t——— AR_generator
+generate(): Array3D +generate(): Array3D

Fig. 2. Classes which implement OpenCL/OpenGL interoperability in the simulation
code.

5 Evaluation

For the purpose of evaluation we use simplified version of (2):
cosh (27|k|(z + h))

{27r|k:| cosh (27| k|R) FualGed

= Foylon(u,0)Fuo{ga(z,y)}} - (3)

¢<x7 y7 Z7 t) = f_l

z,Y

Acceleration of computing and visualization 9

Since standing sea wave generator does not allow efficient GPU implementation
due to autoregressive dependencies between wavy surface points, only velocity
potential solver was rewritten in OpenCL and its performance was compared to
existing OpenMP implementation.

For each implementation the overall performance of the solver for a particu-
lar time instant was measured. Velocity field was computed for one ¢ point, for
128 z points below wavy surface and for each x and y point of four-dimensional
(t,z,y,2) grid. The only parameter that was varied between subsequent pro-
gramme runs is the size of the grid along x dimension. A total of 10 runs were
performed and average time of each stage was computed.

A different FFT library was used for each version of the solver. For OpenMP
version FFT routines from GNU Scientific Library (GSL) [8] were used, and
for OpenCL version clFFT library [5] was used instead. There are two major
differences in the routines from these libraries.

1. The order of frequencies in Fourier transforms is different and cIFF'T library
requires reordering the result of (3) whereas GSL does not.

2. Discontinuity at (z,y) = (0,0) of velocity potential field grid is handled
automatically by cIFFT library, whereas GSL library produce skewed values
at this point.

For GSL library an additional interpolation from neighbouring points was used
to smooth velocity potential field at these points. We have not spotted other
differences in FFT implementations that have impact on the overall performance.

In the course of the numerical experiments we have measured how much time
each solver’s implementation spends in each computation stage to explain find
out how efficient data copying between host and device is in OpenCL imple-
mentation, and how one implementation corresponds to the other in terms of
performance.

6 Results

The experiments showed that GPU implementation outperforms CPU imple-
mentation by a factor of 10-15 (fig. 3), however, distribution of time between
computation stages is different for each implementation (fig. 4). The major time
consumer in CPU implementation is computation of g;, whereas in GPU imple-
mentation its running time is comparable to computation of go. GPU computes
g1 much faster than CPU due to a large amount of modules for transcendental
mathematical function computation. In both implementations g» is computed
on CPU, but for GPU implementation the result is duplicated for each z grid
point in order to perform multiplication of all XY Z planes along z dimension in
single OpenCL kernel, and, subsequently copied to GPU memory which severely
hinders overall stage performance. Copying the resulting velocity potential field
between CPU and GPU consumes ~ 20% of velocity potential solver execution
time.

10 A. Tvashchenko, A. Belezeko, I. Gankevich, V. Korkhov, N. Kulabukhova

Ln —
-
OpenMP
o o |
- —
()
£ .
'_
o - /
o
o OpenCL
o do--o0--=---- o-=-=-===---=-=---- °
I T T |
128 256 512 1024

Wavy surface size

Fig. 3. Performance comparison of CPU (OpenMP) and GPU (OpenCL) versions of
velocity potential solver.

OpenCL OpenMP
o o
— 7] N T
m % %
g % o %
8 FFT O FFT
g O Copy 9 4
© N
o — 7
n n
4 4
E £
[[
<
S] © 7
) i il) i
c . ii
128 256 512 1024 128 256 512 1024

Wavy surface size Wavy surface size

Fig. 4. Performance breakdown for GPU (OpenCL) and CPU (OpenMP) versions of
velocity potential solver.

Acceleration of computing and visualization 11

7 Discussion and future work

Simplified velocity potential formula (3) lacks f; 2 functions which contain spa-
tial derivatives of wavy surface { which are inefficient to compute on GPU. The
remaining derivative (; is also computed on CPU for the sake of efficiency. The
future work is to find high-performance algorithm for multidimensional deriva-
tive computation on GPUs.

OpenGL is still a single-thread library and in most cases of graphics ap-
plications only one thread manages the access to the GL context. This could
lead to the performance drops, thread interoperability issues and complicated
application architecture. Some workarounds could be found yet, like launching
multiple processes and switching contexts between them, but it is not solving
the problems mentioned about really. Thus, there are some premises exist, which
are making sense to investigate on the similar result achievement with the newer
APIs, such as a Vulkan and DirectX 12.

Relatively the same statement could be made about the OpenCL toolkit.
Despite the fact that general GPGPU computing interface allowed us to achieve
some improvements through the waveform computation acceleration and and
made a cross-platform execution possible, it still has some disadvantages. E.g.,
each core should be manually cached after the compilation, which is exactly
proceeded over execution time. Moreover, it could happen that other compute
APIs could show even better performance rates.

We can also consider experimenting with dual chip GPU boards. The main
idea here is to provide for both computing and rendering contexts an exclusive
right to use their own dedicated GPU core in every moment of time. This im-
provement can help for the cases where intensive rendering routines are expected
to be applied for the data obtained during the computations. In that way we
will not lose the performance and, probably, will achieve even better results.

And the most interesting question here is what should be done when the
computing capabilities of the single node will be reached, or simply how do
we scale. The part of application connected with direct computations could be
handled in a common way by the one of MPI implementations. This method
is compatible for both CUDA and CPU driven processes. Some concerns could
appear at the stage of visualisation scaling.

The first and simplest way to achieve the desired result is to accumulate data
from the nodes after each computation round on the master node to join results
and visualise them on it. But if we will make it like this we will lose the benefits
of using a shared buffer for OpenCL and OpenGL. In addition, as the number
of nodes will increase the bandwidth requirements of the channel will grow too,
and in the end we will rest against its limitations.

The second possible method of achieving the result is similar to the first one
and has the same problems, but involves the usage of GPUDirect or Direct GMA
technology for graphics cards depends on their vendor. The only difference here
is that the exchange of data between nodes will be based on peer-to-peer protocol
under CUDA context. It means that GPU will receive messages directly.

12 A. Tvashchenko, A. Belezeko, I. Gankevich, V. Korkhov, N. Kulabukhova

The last possible way to solve this problem is to use distributed rendering
techniques. It is based basically on combination of load distribution and objects
or images composition algorithms, where three main ones can be distinguished:
sort-first, sort-middle and sort-last [13].

/O

Distribute Calculate Render Composite

Scene part 1

Scene

Scene part 2

Fig. 5. Sort-first image compositing.

Sort-first (fig. 5) assumes that the scene should be divided into a number of
zones, each processed on its own hardware. In fact, several cameras/viewports
are created in the OpenGL context on different nodes, and then resulting frame
buffers are simply merged into a single final frame. Two main problems that
could be met here, but can be solved in some way, are artefacts at the joints of
frame parts when using lossy compression and desynchronization of frame pieces
when there is some motion on the scene.

Calculate Redistribute Render > @

Fig. 6. Sort-middle image compositing.

Scene

Sort-middle (fig. 6) is not widely used in real time applications, due to the
fact that it takes an extra time to produce and brings network overheads, but it
is the most effective one. First, each node calculates geometry, and then workload
is getting redistributed equally among all computing devices.

Both methods described above do not really suit us well, since each of the
nodes will process either a single frame, or a part of the total surface, and we
will not involve a viewport in a such way, at least for now.

Acceleration of computing and visualization 13

Distribute Render Composite ®

N

Fig. 7. Sort-last image compositing.

Scene

Calculate

Actually, we are interested in the sort-last method (fig. 7) most of all. Unlike
the previous two, the load distribution here is performed based on the 3D ob-
jects grouping and segmentation. Later on, alpha blending of rendered objects is
performed to retain the resulting frame. This way may not be optimal in some
cases, since nodes will have to render parts of objects that will be overlapped at
the compositing stage, but still it allows to achieve the desired result.

We can even make some optimisation steps here. For example, to reduce the
load on the network channel, we can use an N-ary compositing. In other words,
instead of joining all objects on the only node, we can exchange objects between
N nodes first and connect them. For example, it can be done on the principle of
a binary tree. We can also use various compression algorithms, which show the
greatest performance for colour and numeric data.

8 Conclusion

As a result of the investigation, we managed to achieve positive outcome in com-
putation acceleration and its visualisation using interaction mechanisms between
the graphics and compute contexts. The joint use of OpenGL and OpenCL al-
lowed us to simultaneously use the shared areas of dedicated GPU memory for
calculation and rendering, thereby saving us some time required to copy the
data for RAM to the video card memory. Visualisation of real-time calculation
results allowed to perform fine-grained control for the process showing us new
opportunities for simulation with variable conditions.

Proposed solution could be applied not only for the ocean wavy surface sim-
ulation, but for any other iterative computations, which are producing a sane
amount of data. For example, we can reuse the result in a similar manner for
the costs prediction of monetary assets.

We have also determined the list of possible tasks that could be performed
in the future to improve the functionality of the software solution. One of the
directions is to experiment on combining various graphics and computing APIs
to identify the most optimal solution.

14

A. Tvashchenko, A. Belezeko, I. Gankevich, V. Korkhov, N. Kulabukhova

Acknowledgements

Research was supported by grants of Russian Foundation for Basic Research
(projects no. 16-07-01111, 16-07-00886, 16-07-01113).

References

®

10.
11.

12.

13.

14.

15.

. Board, O.A.R.: Opengl Reference Manual: The Official Reference Document for

Opengl, Release 1 (OTL). Addison-Wesley (C) (1993)

Bogdanova, A., Ivashchenko, A., Belezeko, A.: Creating distributed rendering
applications. In: CEUR Workshop Proceedings. vol. 1787, pp. 130-134 (2016),
http://ceur-ws.org/Vol-1787/130-134-paper-21.pdf

Bradsky, G.: The opencv library. Dr. Dobb’s Journal of Software Tools (2000)
Bucur, A.: OpenCL — OpenGL ES interop: Processing live video streams on
a mobile device — case study. In: ACM SIGGRAPH 2013 Mobile. p. 15. SIG-
GRAPH’13, ACM, New York, NY, USA (2013), http://doi.acm.org/10.1145/
2503512.2503532

cIFFT developers: clFFT: OpenCL Fast Fourier Transforms (FFTs). https://
clmathlibraries.github.io/c1FFT/

Degtyarev, A., Reed, A.: Modelling of incident waves near the ships hull (appli-
cation of autoregressive approach in problems of simulation of rough seas). In:
Proceedings of the 12th International Ship Stability Workshop (2011)

Degtyarev, A.B., Reed, A.M.: Synoptic and short-term modeling of ocean waves.
International Shipbuilding Progress 60(1-4), 523-553 (2013)

Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G., Alken, P., Booth, M.,
Rossi, F., Ulerich, R.: GNU Scientific Library Reference Manual. Network Theory
Ltd., 3 edn. (2009), eds. Brian Gough

Geer, D.: Vendors upgrade their physics processing to improve gaming. Computer
39(8), 22-24 (Aug 2006)

Group, K.: Opencl api reference (2013)

Kochin, N., Kibel, I., Roze, N.: Theoretical hydrodynamics [in Russian]. FizMatLit
(1966)

Liao, W.S., Hsieh, T.J., Chang, Y.L.: Gpu parallel computing of spherical
panorama video stitching. In: 2012 IEEE 18th International Conference on Parallel
and Distributed Systems. pp. 890-895 (Dec 2012)

Molnar, S., Cox, M., Ellsworth, D., Fuchs, H.: A sorting classification of parallel
rendering. IEEE computer graphics and applications 14(4), 23-32 (1994)
Ukidave, Y., Gong, X., Kaeli, D.: Performance evaluation and optimization mech-
anisms for inter-operable graphics and computation on gpus. In: Proceedings
of Workshop on General Purpose Processing Using GPUs. pp. 37-45. GPGPU-
7, ACM, New York, NY, USA (2014), http://doi.acm.org/10.1145/2576779.
2576784

Unity Technologies: Unity - Manual: Compute Shaders. https://docs.unity3d.
com/Manual/ComputeShaders.html

