
Virtual testbed: Ship motion simulation
for personal workstations

Alexander Degtyarev[0000−0003−0967−2949],
Vasily Khramushin[0000−0002−3357−169X],

Ivan Gankevich*[0000−0001−7067−6928],
Ivan Petriakov,

Anton Gavrikov[0000−0003−2128−8368], and
Artemii Grigorev

Saint Petersburg State University, Russia
{a.degtyarev,v.khramushin,i.gankevich}@spbu.ru,
{st049350,st047437,st016177}@student.spbu.ru

https://spbu.ru/

Abstract. Virtual testbed is a computer programme that simulates
ocean waves, ship motions and compartment flooding. One feature of
this programme is that it visualises physical phenomena frame by frame
as the simulation progresses. The aim of the studies reported here was
to assess how much performance can be gained using graphical acceler-
ators compared to ordinary processors when repeating the same com-
putations in a loop. We rewrote programme’s hot spots in OpenCL to
able to execute them on a graphical accelerator and benchmarked their
performance with a number of real-world ship models. The analysis of
the results showed that data copying in and out of accelerator’s main
memory has major impact on performance when done in a loop, and the
best performance is achieved when copying in and out is done outside
the loop (when data copying inside the loop involves accelerator’s main
memory only). This result comes in line with how distributed computa-
tions are performed on a set of cluster nodes, and suggests using similar
approaches for single heterogeneous node with a graphical accelerator.

Keywords: wavy surface · pressure field · pressure force · ship · wetted
surface · OpenCL · GPGPU.

1 Introduction

Simulation of ship motion in ocean waves is done in several computer pro-
grammes [9, 11, 12] that differ in what physical phenomena they simulate (ma-
noeuvring in waves, compartment flooding, regular and irregular waves, wind,
real-time simulation or batch processing etc.) and application area (scientific
studies, education or entertainment). These programmes are virtual analogues
of ship model basins that are used to simulate characteristics and behaviour of
ship in a particular sea conditions. The advantage of using virtual ship model

2 A. Degtyarev et al.

basin over a physical one is that experiments are performed in real scale (with
real-sized ships and ocean waves) and on a computer without the need to access
high-technological facility.

Although, all numerical experiments are performed on a computer, one com-
puter is not powerful enough to perform them fast. Often, this problem is solved
by using a cluster of computer nodes or a supercomputer; however, a supercom-
puter or a cluster is another high-technological facility that a researcher have to
gain access to. In that case virtual ship model basin has little advantage over a
physical one: the research is slowed down by official documents’ approvals and
time-sharing of computing resources.

One way of removing this barrier is to use graphical accelerator to speed up
computations. In that case simulation can be performed on a regular workstation
that has a dedicated graphics card. Most of the researchers use GPU to make
visualisation in real-time, but it is rarely used for speeding up simulation parts,
let alone the whole programme. In [2] the authors use GPU to speed up com-
putation of free surface motion inside a tank. In [14] the authors rewrite their
simulation code using Fast Fourier transforms and propose to use GPU to gain
more performance. In [6] the authors use GPU to simulate ocean waves. Never-
theless, the most efficient way of using GPU is to use it for both computation
and visualisation: it allows to minimise data copying between CPU and GPU
memory and use mathematical models, data structures and numerical methods
that are tailored to graphical accelerators.

The present research proposes a numerical method for computing velocity
potentials and wave pressures on a graphical accelerator, briefly explains other
methods in the programme, and presents benchmarks for asynchronous visuali-
sation and simulation.

2 Methods

Virtual testbed is a computer programme that simulates ocean waves, ship mo-
tions and compartment flooding. One feature that distinguishes it with respect to
existing proposals is the use of graphical accelerators to speed up computations
and real-time visualisation that was made possible by these accelerators.

The programme consists of the following modules: vessel reads ship hull
model from an input file, gui draws current state of the virtual world and core

computes each step of the simulation. The core module consists of components
that are linked together in a pipeline, in which output of one component is the
input of another one. The computation is carried out in parallel to visualisation,
and synchronisation occurs after each simulation step. It makes graphical user
interface responsive even when workstation is not powerful enough to compute
in real-time.

Inside core module the following components are present: wavy surface gen-
erator, velocity potential solver, pressure force solver. Each component in the
core module is interchangeable, which means that different wavy surface gener-
ators can be used with the same velocity potential solver. Once initialised, these

Virtual testbed 3

components are executed in a loop in which each iteration computes the next
time step of the simulation. Although, iterations of the loop are sequential, each
component is internally parallel, i.e. each component uses OpenMP or OpenCL
to perform computations on each processor or graphical core. In other words,
Virtual testbed follows BSP model [13] for organising parallel computations,
in which a programme consists of sequential steps each of which is internally
parallel (fig. 1).

2.1 Wavy surface generation

There are three models that are used for wavy surface generation in Virtual
testbed: autoregressive moving average model (ARMA), Stokes wave, and plane
sine/cosine wave. It is not beneficial in terms of performance to execute ARMA
model on a graphical accelerator [5]: its algorithm does not use transcenden-
tal mathematical functions, has nonlinear memory access pattern and complex
information dependencies. It is much more efficient (even without serious opti-
misations) to execute it on a processor. In contrast, the other two wave models
are embarrassingly parallel and easy to rewrite in OpenCL.

Each wave model outputs three-dimensional (one temporal and two spatial
dimensions) field of wavy surface elevation, and ARMA model post-processes
this field using the following algorithm. First, autocovariance function (ACF) is
estimated from the input field using Wiener—Khinchin theorem. Then ACF is
used to build autocovariance matrix and determine autoregressive model coeffi-
cients. Finally, the coefficients are used to generate new wavy surface elevation
field.

The resulting field is stochastic, but has the same integral characteristics as
the original one. In particular, probability distribution function of wavy surface
elevation, wave height, length and period are preserved. Using ARMA model for
post-processing has several advantages.

– It makes wavy surface aperiodic (its period equals period of pseudo-random
number generator, which can be considered infinite for all practical applica-
tions) which allows to perform statistical studies using Virtual testbed.

– It is much faster to generate wavy surface with this model than with the
original model, because ARMA model involves only multiplications and ad-
ditions rather than transcendental mathematical functions.

– This model allows to use any wavy surface as the input (not only plane and
Stokes waves). Frequency-directional spectrum of a particular ocean region
can be used instead.

This paper gives only a short description of the model, please refer to [4, 5] for
in-depth study.

To summarise, wavy surface generator produces wavy surface elevation field
using one of the models described above. For ARMA model it is impractical to
generate it using graphical accelerator, and for other models it is to trivial to
discuss. This field is an input for velocity potential solver.

4 A. Degtyarev et al.

2.2 Velocity potential computation

Since wavy surface generator produces discretely given elevation field we may
not use formula from linear wave theory to compute velocity potential; instead,
we derived a formula for arbitrary surface for inviscid incompressible fluid:

φ(x, y, z, t) = F−1
x,y

{
cosh (2π|k|(z + h))

2π|k|
Fu,v{f(x, y, t)}

Fu,v{D3 (x, y, ζ (x, y))}

}
, (1)

where

f(x, y, t) = ζt(x, y, t)/ (if1(x, y) + if2(x, y)− f3(x, y)) ,

f1(x, y) = ζx/

√
1 + ζ2x + ζ2y − ζx, Fu,v{D3 (x, y, z)} = cosh (2π|k|z) ,

f2(x, y) = ζy/

√
1 + ζ2x + ζ2y − ζy, |k| =

√
u2 + v2,

f3(x, y) = 1/

√
1 + ζ2x + ζ2y .

Here k is wave number, ζ — wavy surface elevation, h — water depth, F —
Fourier transform, φ — velocity potential. The formula is derived as a solution
for continuity equation with kinematic boundary condition

∇2φ = 0,

φt +
1

2
|υ|2 + gζ = −p

ρ
, at z = ζ(x, y, t), (2)

Dζ = ∇φ · n, at z = ζ(x, y, t),

without assumptions of linear wave theory (wave length is much larger than wave
height). Hence it can be used for arbitrary-amplitude ocean waves. Here the
first equation is continuity equation, the second is dynamic boundary condition,
and the last one is kinematic boundary condition; p — pressure, ρ — fluid
density, υ = (φx, φy, φz) — velocity vector, g — acceleration of gravity, and
D — substantial (Lagrange) derivative. Since we solve for φ, dynamic boundary
condition becomes explicit formula for pressure and is used to compute pressure
force acting on a ship hull (see sec. 2.3).

Integral in (1) converges when summation goes over a range of wave numbers
that are actually present in discretely given wavy surface. This range is deter-
mined numerically by finding crests and troughs for each spatial dimension of
the wavy surface with polynomial interpolation and using these values to de-
termine wave length. For small-amplitude waves this approach gives the same
values of velocity potential field as direct application of the formula from linear
wave theory.

Formula (1) is particularly suitable for computation on a graphical accel-
erator: it contains transcendental mathematical functions (complex exponents)
that help offset slow global memory loads and stores, it is explicit which makes
it easy to compute in parallel, and it is written using Fourier transforms that
are efficient to compute on a graphical accelerator [15].

This paper gives only a short description of the method, please refer to [4, 5]
for in-depth study.

Virtual testbed 5

2.3 Pressure force computation

There are three stages of pressure force computation: determining wetted surface
of a ship hull, computing wave pressure field under wavy surface, and computing
pressure force acting on a ship hull.

In order to determine wetted surface, ship hull is decomposed into triangular
panels (faces) that approximate its geometry. Then for each panel the algorithm
determines its position relative to wavy surface. If it is fully submerged, it is
considered wetted; if it is partially submerged, the algorithm computes inter-
section points using bisection method and wavy surface interpolation, and slices
the part of the panel which is above the wavy surface (for simplicity the slice
is assumed to be straight line, as is the case for sufficiently small panels). Wave
pressure at any point under wavy surface is computed using dynamic boundary
condition from (2) as an explicit formula. Then the pressure is interpolated in
the centre of each panel to compute pressure force acting on a ship hull.

It is straightforward to rewrite pressure computation for a graphical accel-
erator as its algorithm reduces to looping over a large collection of panels and
performing the same calculations for each of them; however, dynamic boundary
condition contains temporal and spatial derivatives that have to be computed.
Although, computing derivatives on a processor is fast, copying the results to
accelerator’s main memory proved to be inefficient as there are four arrays (one
for each dimension) that need to be allocated and transferred. Simply rewriting
code for OpenCL proved to be even more inefficient due to irregular memory
access pattern for different array dimensions. So, we resorted to implementing
the algorithm described in [10], that stores intermediate results in the local
memory of the accelerator. Using this algorithm allowed us to store arrays of
derivatives entirely in graphical accelerator’s main memory and eliminate data
transfer altogether.

2.4 Translational and angular ship motion computation

In order to compute ship position, translational velocity, angular displacement
and angular velocity for each time step we solve equations of translational and
angular motion (adapted from [9]) using pressure force computed for each panel:

v̇ =
F

m
+ gτ −Ω × v − λv, ḣ = G−Ω × h, h = I ·Ω.

Here τ = (− sin θ, cos θ sinφ,− cos θ cosφ) is a vector that transforms g into
body-fixed coordinate system, v — translational velocity vector, g — gravita-
tional acceleration, Ω — angular velocity vector, F — vector of external forces,
m — ship mass, λ — damping coefficient, h — angular momentum, G — the
moment of external forces, and I — inertia matrix.

We compute total force F and momentum G acting on a ship hull by adding
forces acting on each panel. Then we solve the system of equations using nu-
merical Runge—Kutta—Fehlberg method [8]. The vector of values determined
by the method consists of all components of the following vectors: ship position,

6 A. Degtyarev et al.

translational velocity, angular displacement and angular velocity (twelve vari-
ables in total). Since we are not interested in angular momentum, we use inertia
matrix to obtain it from angular velocity and inverse inertia matrix to convert it
back. Twelve vector components are too few to efficiently execute this method
on a graphical accelerator and there is no other way of making iterative method
parallel, so we execute it on a processor.

3 Results

3.1 Test setup

Virtual testbed performance was benchmarked in a number of tests. Since we
use both OpenMP and OpenCL technologies for parallel computing, we wanted
to know how performance scales with the number of processor cores and with
and without graphical accelerator.

Graphical accelerators are divided into two broad categories: for general pur-
pose computations and for visualisation. Accelerators from the first category
typically have more double precision arithmetic units and accelerators from the
second category are typically optimised for single precision. The ratio of single to
double precision performance can be as high as 32. Virtual testbed produces cor-
rect results for both single and double precision, but OpenCL version supports
only single precision, and graphical accelerators that we used have higher single
precision performance (tab. 1). So we choose single precision in all benchmarks.

Table 1. Hardware configurations for benchmarks. For all benchmarks we used GCC
version 8.1.1 compiler and optimisation flags -O3 -march=native.

GPU GFLOPS

Node CPU GPU Single Double

Storm Intel Q9550 Radeon R7 360 1613 101
GPUlab AMD FX-8370 NVIDIA GTX1060 4375 137
Capybara Intel E5-2630 v4 NVIDIA P5000 8873 277

Double precision was used only for computing autoregressive model coeffi-
cients, because round-off and truncation numerical errors make covariance ma-
trices (from which coefficients are computed) non-positive definite. These matri-
ces typically have very large condition numbers, and linear system which they
represent cannot be solved by Gaussian elimination or LDLT Cholesky decom-
position, as these methods are numerically unstable (at least in our programme).

Since Virtual testbed does both visualisation and computation in real-time,
we measured performance of each stage of the main loop (fig. 1) synchronously
with the parameters that affect it. To assess computational performance we
measured execution time of each stage in microseconds (wall clock time) together

Virtual testbed 7

with the number of wetted panels, and wavy surface size. To assess visualisation
performance we measured the execution time of each visualisation frame (one
iteration of the visualisation main loop) and execution time of computational
frame (one iteration of the computational loop), from which it is easy to compute
the usual frames-per-second metric. The tests were run for one minute and were
forcibly stopped after the time ran out. Wall clock time was measured as a
median across all simulation steps (or visualisation frames).

Wavy
surface

Autoreg.
model

Wave
numbers

Velocity
potential

Wave
pressure

Wetted
surface

Elevation
deriv.

Pressure
force

Ship
velocities

Fig. 1. Virtual testbed main loop.

We ran all tests on each node for increasing number of processor cores and
with and without graphical accelerator. The code was compiled with maximum
optimisation level including processor-specific optimisations which enabled auto-
vectorisation for further performance improvements.

We ran all tests for each of the three ship hull models: Aurora cruiser, MICW
(a hull with reduced moments of inertia for the current waterline) and a sphere.
The first two models represent real-world ships with known characteristics and
we took them from Vessel database [1] registered by our university which is
managed by Hull programme [7]. Parameters of these ship models are listed
in tab. 2, three-dimensional models are shown in fig. 2. Sphere was used as a
geometric shape wetted surface area of which is close to constant under impact
of ocean waves.

We ran all tests for each workstation from tab. 1 to investigate if there is a
difference in performance between ordinary workstation and a computer for visu-
alisation. Storm is a regular workstation with mediocre processor and graphical
accelerator, GPUlab is a slightly more powerful workstation, and Capybara has
the most powerful processor and professional graphical accelerator optimised for
visualisation.

Table 2. Parameters of ship models that were used in the benchmarks.

Aurora MICW Sphere

Length, m 126.5 260 100
Beam, m 16.8 32 100
Depth, m 14.5 31 100
No. of panels 29306 10912 5120

8 A. Degtyarev et al.

Fig. 2. Aurora and MICW three-dimensional ship hull models.

3.2 Benchmark results

The main result of the benchmarks is that Virtual testbed is capable of running
on a regular workstation with or without a graphical accelerator in real-time
with high frame rate and small simulation time steps.

– We achieved more than 60 simulation steps per second (SSPS) on each of the
workstations. SSPS is the same metric as frames per second in visuliastion,
but for simulation. For Storm and GPUlab the most performant programme
version was the one for graphical accelerator and for Capybara the most
performant version was the one for the processor (tab. 3).

– The most performant node is GPUlab with 104 simulation steps per second.
Performance of Capybara is higher than of Storm, but it uses powerful server-
grade processor to achieve it.

– Computational speedup for increasing number of parallel OpenMP threads
is far from linear: we achieved only fourfold speedup for ten threads (fig. 3).

– Although, GPUlab’s processor has higher frequency, even one core of Capy-
bara’s processor achieves slightly higher performance.

– The least powerful workstation (Storm) has the largest positive difference
between graphical accelerator and processor performance (fig. 4). The most
powerful workstation (Capybara) has comparable but negative difference.

– Usage of graphical accelerator increases time needed to synchronise simula-
tion step with the visualisation frame (exchange stage in fig. 4).

4 Discussion

Although, graphical accelerator gives noticeable performance increase only for
the least powerful workstation, we considered only the simplest simulation sce-
nario (ship motions induced by a plane Stokes wave) in the benchmarks: The
problem that we solve is too small to saturate graphical accelerator cores. We
tried to eliminate expensive data copying operations between host and graphical
accelerator memory, where possible, but we need to simulate more physical phe-
nomena and at a larger scale (ships with large number of panels, large number
of compartments, wind simulation etc.) to verify that performance gap increases

Virtual testbed 9

Table 3. Best median performance for each workstation and each ship hull. Here t
is simulation step computation time, m — no. of simulation steps per second (SSPS),
and n — the number of OpenMP threads, CL — OpenCL, MP — OpenMP.

Sphere Aurora MICW

Node t, ms m n ver. t, ms m n ver. t, ms m n ver.

Storm 16 64 1 CL 14 72 1 CL 29 34 1 CL
GPUlab 10 104 1 CL 9 112 1 CL 18 55 1 CL
Capybara 12 85 10 MP 15 66 10 MP 19 51 10 MP

10

20

30

40

50

60

70

80

90

0 2 4 6 8 10

T
im

e,
 m

s

No. of parallel threads

Storm

GPUlab

Capybara

0

2

4

6

8

10

0 2 4 6 8 10

S
p
ee

d
u
p

No. of parallel threads

Storm

GPUlab

Capybara

Fig. 3. Median simulation step computation time for different number of parallel
threads (sphere).

0

20

40

60

80

sequential

openm
p

opencl

sequential

openm
p

opencl

sequential

openm
p

opencl

T
im

e,
 m

s

waves

velocity

wetted

clamp

pressure

exchange

CapybaraGPUlabStorm

Fig. 4. Median computation time for each main loop stage, each node and sequential,
OpenMP and OpenCL versions (sphere).

10 A. Degtyarev et al.

for powerful workstations. On the bright side, even if a computer does not have
powerful graphical accelerator (e.g. a laptop with integrated graphics), it still
can run Virtual testbed with acceptable performance.

Large SSPS is needed neither for smooth visualisation, nor for accurate sim-
ulation; however, it gives performance reserve for further increase in detail and
scale of simulated physical phenomena. We manually limit simulation time step
to a minimum of 1/30 of the second to prevent floating-point numerical errors
due to small time steps. Also, we limit maximum time step to have wave fre-
quency greater or equal to Nyquist frequency for precise partial time derivatives
computation.

Real-time simulation is essential not only for educational purposes, but also
for on-board intelligent systems. These systems analyse data coming from a
multitude of sensors the ship equips, calculate probability of occurrence of a
particular dangerous situation (e.g. large roll angle) and try to prevent it by
notifying ship’s crew and an operator on the coast. This is one of the directions
of future work.

Overall performance depends on the size of the ship rather than the number
of panels. MICW hull has less number of panels than Aurora, but two times
larger size and two times worse performance (tab. 3). The size of the hull affects
the size of the grid in each point of which velocity potential and then pressure
is computed. These routines are much more compute intensive in comparison to
wetted surface determination and pressure force computation, performance of
which depends on the number of panels.

Despite the fact that Capybara has the highest floating-point performance
across all workstations in the benchmarks, Virtual testbed runs faster on its
processor, not the graphical accelerator. Routine-by-routine investigation showed
that this graphics card is simply slower at computing even fully parallel Stokes
wave generator OpenCL kernel. This kernel fills three-dimensional array using
explicit formula for the wave profile, it has linear memory access pattern and no
information dependencies between array elements. It seems, that P5000 is not
optimised for general purpose computations. We did not conduct visualisation
benchmarks, so we do not know if it is more efficient in that case.

Although, Capybara’s processor has 20 hardware threads (2 threads per
core), OpenMP performance does not scale beyond 10 threads. Parallel threads
in our code do mostly the same operations but with different data, so switching
between different hardware threads running on the same core in the hope that
the second thread performs useful work while the first one stalls on input/output
or load/store operation is not efficient. This problem is usually solved by cre-
ating a pipeline from the main loop in which each stage is executed in parallel
and data constantly flows between subsequent stages. This approach is easy to
implement when computational grid can be divided into distinct parts, which
is not the case for Virtual testbed: there are too many dependencies between
parts and the position and the size of each part can be different in each stage.
Graphical accelerators have more efficient hardware threads switching which,

Virtual testbed 11

and pipeline would probably not improve their performance, so we did not take
this approach.

Our approach for performing computations on a heterogeneous node (a node
with both a processor and a graphical accelerator) is similar to the approach
followed by the authors of Spark distributed data processing framework [16]. In
this framework data is first loaded into the main memory of each cluster node and
then processed in a loop. Each iteration of this loop runs by all nodes in parallel
and synchronisation occurs at the end of each iteration. This is in contrast to
MapReduce framework [3] where after each iteration the data is written to stable
storage and then read back into the main memory to continue processing. Not
interacting with slow stable storage on every iteration allows Spark to achieve
an order of magnitude higher performance than Hadoop (open-source version of
MapReduce) on iterative algorithms.

For a heterogeneous node an analogue of stable storage, read/writes to which
is much slower than accesses to the main memory, is graphical accelerator mem-
ory. To minimise interaction with this memory, we do not read intermediate
results of our computations from it, but reuse arrays that already reside there.
(As a concrete example, we do not copy pressure field from a graphical acceler-
ator, only the forces for each panel.) This allows us to eliminate expensive data
transfer between CPU and GPU memory. In early versions of our programme
this copying slowed down simulation significantly.

Although, heterogeneous node is not a cluster, efficient programme architec-
ture for such a node is similar to distributed data processing systems: we process
data only on those device main memory of which contains the data and we never
transfer intermediate computation results between devices. To implement this
principle the whole iteration of the programme’s main loop have to be executed
either on a processor or a graphical accelerator. Given the time constraints, fu-
ture maintenance burden and programme’s code size, it was difficult to fully
follow this approach, but we came to a reasonable approximation of it. We still
have functions (clamp stage in fig. 4 that reduces the size of the computational
grid to the points nearby the ship) in Virtual testbed that work with intermedi-
ate results on a processor, but the amount of data that is copied to and from a
graphical accelerator is relatively small.

5 Conclusion

We showed that ship motion simulation can be performed on a regular worksta-
tion with or without graphical accelerator. Our programme includes only mini-
mal number of mathematical models that allow ship motions calculation, but has
performance reserve for inclusion of additional models. We plan to implement
rudder and propeller, compartment flooding and fire, wind and trochoidal waves
simulation. Apart from that, the main direction of future research is creation
of on-board intelligent system that would include Virtual testbed as an integral
part for simulating and predicting physical phenomena.

12 A. Degtyarev et al.

Acknowledgements. Research work is supported by Saint Petersburg State
University (grant no. 26520170 and 39417213).

References

1. Bogdanov, A., Khramushin, V.: Vessel: Blueprints for the analysis of hy-
drostatic characteristics, stability and propulsion of the ship (in Russian)
(2015), http://www1.fips.ru/fips_servl/fips_servlet?DB=EVM&DocNumber=

2015621368&TypeFile=html

2. Cercos-Pita, J.L., Bulian, G., Pérez-Rojas, L., Francescutto, A.: Coupled simula-
tion of nonlinear ship motions and a free surface tank. Ocean Engineering 120,
281–288 (2016). https://doi.org/10.1016/j.oceaneng.2016.03.015

3. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on
large clusters. Communications of the ACM 51(1), 107–113 (Jan 2008).
https://doi.org/10.1145/1327452.1327492

4. Gankevich, I.: Simulation modelling of irregular waves for marine object dynamics
programmes. Ph.D. thesis, Saint Petersburg State University, Saint Petersburg,
Russia (June 2018)

5. Gankevich, I., Degtyarev, A.: Simulation of Standing and Propagating Sea Waves
with Three-Dimensional ARMA Model, pp. 249–278. Springer International Pub-
lishing, Cham (2018). https://doi.org/10.1007/978-3-319-71934-4 18

6. Keeler, T., Bridson, R.: Ocean waves animation using boundary integral equations
and explicit mesh tracking. In: Proceedings of the ACM SIGGRAPH/Eurographics
Symposium on Computer Animation. pp. 11–19. SCA’14, Eurographics Associ-
ation, Aire-la-Ville, Switzerland (2014), http://dl.acm.org/citation.cfm?id=

2849517.2849520

7. Khramushin, V.: Analytic ship hull shape construction, wave resistance calcula-
tions, theoretical blueprint feature curve calculations, and ship stability diagrams
(in Russian) (2010), http://www1.fips.ru/fips_servl/fips_servlet?DB=EVM&

DocNumber=2010615849&TypeFile=html

8. Mathews, J.H., Fink, K.D.: Numerical methods using MATLAB. Pearson Prentice
Hall, London, 4th edn. (2004)

9. Matusiak, J.: Dynamics of a Rigid Ship. No. 11/2013 in SCIENCE + TECH-
NOLOGY, Aalto University; Aalto-yliopisto (2013), http://urn.fi/URN:ISBN:

978-952-60-5205-2

10. Micikevicius, P.: 3D finite difference computation on GPUs using CUDA. In:
Proceedings of 2nd Workshop on General Purpose Processing on Graphics
Processing Units. pp. 79–84. GPGPU-2, ACM, New York, NY, USA (2009).
https://doi.org/10.1145/1513895.1513905

11. Shin, Y., Belenky, V., Lin, W., Weems, K., Engle, A., McTaggart, K., Falzarano,
J.M., Hutchison, B.L., Gerigk, M., Grochowalski, S.: Nonlinear time domain sim-
ulation technology for seakeeping and wave-load analysis for modern ship design.
authors’ closure. Transactions-Society of Naval Architects and Marine Engineers
111, 557–583 (2003)

12. Ueng, S.K., Lin, D., Liu, C.H.: A ship motion simulation system. Virtual Reality
12(1), 65–76 (Mar 2008). https://doi.org/10.1007/s10055-008-0088-8

13. Valiant, L.G.: A bridging model for parallel computation. Communications of the
ACM 33(8), 103–111 (Aug 1990). https://doi.org/10.1145/79173.79181

Virtual testbed 13

14. Varela, J.M., Soares, C.G.: Interactive simulation of ship motions in random seas
based on real wave spectra. In: Proceedings of the International Conference on
Computer Graphics Theory and Applications. pp. 235–244 (2011)

15. Volkov, V., Kazian, B.: Fitting FFT onto the G80 architecture. Tech. Rep. 6,
University of California, Berkeley (May 2008)

16. Zaharia, M., Xin, R.S., Wendell, P., Das, T., Armbrust, M., Dave, A., Meng, X.,
Rosen, J., Venkataraman, S., Franklin, M.J., Ghodsi, A., Gonzalez, J., Shenker, S.,
Stoica, I.: Apache spark: A unified engine for big data processing. Commun. ACM
59(11), 56–65 (October 2016). https://doi.org/10.1145/2934664

