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Abstract. Diffraction and radiation forces result from the interaction
between the ship hull and the moving fluid. These forces are typically
simulated using added masses, a method that uses mass to compensate
for not computing these forces directly. In this paper we propose simple
mathematical model to compute diffraction force. The model is based on
Lagrangian description of the flow and uses law of reflection to include
diffraction term in the solution. The solution satisfies continuity equation
and equation of motion, but is restricted to the boundary of the ship
hull. The solution was implemented in velocity potential solver in Virtual
testbed — a programme for workstations that simulates ship motions in
extreme conditions. Performance benchmarks of the solver showed that
it is particularly efficient on graphical accelerators.

Keywords: ocean wave diffraction - ocean wave radiation - fluid velocity
field - law of reflection - OpenCL - OpenMP - GPGPU.

1 Introduction

There are two mathematical models that describe rigid body motion and fluid
particle motion: equations of translational and angular motion of the rigid body
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(Newton’s Second Law) and Gerstner equations for ocean waves (which are so-
lutions to linearised equations of motions for fluid particles). Usually, we use
these models independently to generate incident ocean waves and then compute
body motions caused by these waves. To measure the effect of still fluid on an
oscillating rigid body (radiation forces) and the effect of fluid particles hitting
the body (diffraction forces), we use added masses and damping coefficients —
simplified formulae derived for small-amplitude oscillatory motion.

But, what if we want to simulate large-amplitude rigid body motion with
greater accuracy? There are two possible ways. First, we may use numerical
methods such as Reynolds-Averaged Navier Stokes (RANS) method [5]. This
method is accurate, can be used for viscous fluid, but not the most compu-
tationally efficient. Second, we may solve Gerstner equations with appropriate
boundary condition and use the solution to compute both rigid body and fluid
particle motion around it. This paper explores this second option. Similar ap-
proach was followed by Fenton in [1-3], but the distinctive feature of our ap-
proach is the use of law of reflection to derive analytic expressions for reflected
waves and fluid particles.

2 Methods

2.1 Equations of motions with a moving surface boundary

An oscillating rigid body that floats in the water and experiences incident waves
both reflects existing waves and generates new waves:

— fluid particles hit the body, causing it to move, and then reflect from it;
— moving body hits fluid particles and makes them move.

Both wave reflection and generation have the same nature — they are caused
by the collision of the particles and the body — hence we describe them by
the same set of formulae. Hereinafter we borrow the mathematical notation for
Lagrangian description of the flow from [4].

In Lagrangian description of flow instantaneous particle coordinates R =
(x,y,z) depend on particle positions at rest (independent initial coordinates)
¢ = (a,8,9) and time ¢, i.e. R = R(q, 3,0,t). Using this notation equation of
motion (conservation of momentum) is written as

1
Ry +92+ ;VRP =0, (1)

where R — particle coordinates, 2 — unit vector in the direction of positive
z, p — pressure, p — fluid density, g — gravitational acceleration. Continuity
equation (conservation of mass) is written as

1J =1, §|J\=o, J=|zpys 28
Ts Ys 28
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Multiplying both sides of (1) by J and noting that Vep = JVRp gives
1

Following [4] we seek solution to this equation in the form of a simultaneous
perturbation expansion for position, pressure, and the vorticity function:

R=Ry+Ry+ Ry + ...
P="Pa—pgd+pi+p2t..
Zeroth order terms are related to particles positions at rest:
Ry=¢
Po =Pa — pgo

First-order terms are solutions to linearised equation of motion and equation of
continuity:

. 1
tht + gV (Rl . Z) + ;Vpl =0

V-R =0
We seek solutions of the form R; = Vw to make the flow irrotational. Plugging
this form into the equations gives

V (wi + gws +p1/p) =0

Aw =0 2

The first equation denotes conservation of momentum (Newton’s second law,
equation of motion) and the second equation denotes conservation of mass (equa-
tion of continuity).

When we have no boundary condition we seek solutions of the form

w (e, B,6) = Re f(u,v) exp (iua + ivf + ké — iwt) , (3)

where u and v are wave numbers. We plug (3) into continuity equation (2)
where p; is constant and get k = vu? + v2. That means that expression (3) is
the solution to this equation when k is wave vector magnitude, i.e. w decays
exponentially with increasing water depth multiplied by wave vector magnitude.

Then we plug (3) into equation of motion (2) and get w? = gk, which is dis-
persion relation from classic linear wave theory. That means that the expression
is the solution to this equation when angular frequency depends on the wave
number, i.e. waves of different lengths have different phase velocities.

Before solving this system of equations for an arbitrary moving surface bound-
ary, we consider particular cases to substantiate the choice of the form of the
solution.

We use Reexp (iua + ivf + kd —iwt) to describe fluid particle potential.
Here u and v are wave numbers, w is angular frequency, and k is wave vector.
This notation makes formulae short and is equivalent to the description that
uses traditional harmonic functions. This notation allows for easy transition to
irregular waves via Fourier transforms which are essential for fast computations.
Such solutions will be studied in future work.
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2.2 Stationary surface boundary

In this section we explore solutions stationary surface boundary in a form of
infinite plane surface. On such a boundary the projection of particle velocity to
the surface normal is nought. We write boundary conditions and corresponding
solutions for different orientations of this boundary and then generalise these
solutions to a parametric surface.

Infinite wall On a vertical surface the boundary condition is written as

d
£Vw-n:——aw:0; a = ag; n=

O O

Here we consider only « coordinate, the derivations for 8 are similar. The po-
tential of incident fluid particle has the form

w (e, B,6,t) = exp (k0 — iwt) exp (iua + v f3) .

Velocity vector of this particle is

%Vw = iw (dy, + id;) exp (kd — iwt) exp (tua + ivf) ;
0 U

di=0l: di=|v
k 0

where d; is horizontal incident wave direction and dj. is a vector that contains
amplitude damping coefficient. (We use the vector instead of the scalar to shorten
mathematical notation, otherwise we would have write a separate formula for
vertical coordinate.) The law of reflection states that the angle of incidence
equals the angle of reflection. Then the direction of reflected wave is!

—Uu
dT:di—dSZdi—Qn(di“n): (%
0

We seek solutions of the form
w (e, B,6,t) = [Cy exp (iua) + Co exp (—iua)] exp (kd — iwt) exp (ivf).  (4)
We plug this expression into the boundary condition and get
Cy exp (tuag) — Co exp (—iucg) = 0,

! Initially, we included the third component of incident wave direction making the
vector complex-valued, however, the solution blew up as a result of mixing real and
imaginary parts in dot products involving complex-valued vectors. The problem was
solved by reflecting in two dimensions which is intuitive for ocean waves, but not for
particles.



Simulation of ocean wave reflection from the ship hull 5

hence Cy = Cexp(—iuag) and Cy = —C exp(iuag). Constant C' may take ar-
bitrary values, here we set it to 1. Plugging Cy and C5 into (4) gives the final
solution

w (e, B,6,t) = cosh (iu (ap — a)) exp (kd — iwt) exp (ivf3) .

There are two exponents in this solution with the opposite signs before horizontal
coordinate a. These exponents denote incident and reflected wave respectively.
The amplitude of the reflected wave does not decay as we go farther from the
boundary, but decay only when we go deeper in the ocean. This behaviour cor-
responds to the real-world ocean waves.

Infinite plate On a horizontal surface the boundary condition is written as

0
d d 0
EVW”—@&U}—O, 5_507 n= g)

Analogously to wave direction we write vector form of the incident particle tra-
jectory radius damping coefficient as (0,0, k), hence vector form of the reflected
coefficient is (0,0, —k). We seek solutions of the form

w(a, B,6,t) = [Cy exp (kd) + Cy exp (—kd)] exp (—iwt) exp (iua + wfB) . (5)
We plug this expression into the boundary condition and get
Cl exXp (kdo) - CQ exp (—kéo) =0.

Hence Cy = Cexp (—kdp) and Cy = Cexp (kdp). Constant C' may take arbitrary
values, here we set it to 1/2. Plugging C; and Cj into (5) gives the final solution

w (e, B,6,t) = cosh (k (6 — dg)) exp (—iwt) exp (iua + ivf3) .

There are two exponents in this solution with opposite signs before vertical
coordinate 0. These exponents make the radius of the particle trajectories decay
exponentially while approaching the boundary dp (i.e. with increasing water
depth). This is known solution from linear wave theory.

Infinite panel On an arbitrary aligned infinite surface the boundary condition
is written as

d

dt
where (o is the point on the boundary plane and the third component of the
normal vector is nought: n = (ny,n9,0), |n| = 1. The direction of incident wave
is d; = (u,v,0) and the direction of reflected wave is d,. We seek solutions of
the form

Vw-n=0; n- (¢ —¢o) =0,

w(a, B,6,t) = Cyexp ((id; + dy.) - € — iw1t)

+ Cayexp ((id, + dy) - ¢ — iwat) . (©)
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We plug this expression into the boundary condition and get
(id; - m) C1 + (id, - m) Co exp (—ids - (o) = 0.

Here we substitute d,. - n with —d; - n which is derived from the formula for d,.
Hence, the boundary condition reduces to

Cl — CQ exp (7Z.ds . CO) =0.

Hence Cq = %exp (—%ids . Co) and Cy = % exp (%ids . Co). This solution reduces
to the solution for the wall when n = (0,0, 1).

In a computer programme it is more practical to set C; = 1 and Cy =
exp (ids - (p): that way you have to integrate only the second term in the solution
over all ship hull panels (see sec. 3.1).

2.3 OpenCL implementation

Solution for fluid velocity field was implemented in velocity potential solver in the
framework of Virtual testbed. Virtual testbed is a programme for workstations
that simulates ship motions in extreme conditions and physical phenomena that
causes them: ocean waves, wind, compartment flooding etc. The main feature of
this programme is to perform all calculations nearly in real time, paying attention
to the high accuracy of calculations, which is partially achieved using graphical
accelerators.

Virtual testbed uses several solvers to simulate ship motions. The algorithm
for velocity potential solver is the following.

— First of all, we generate wavy surface, according to our solution and using
wetted ship panels from the previous time step (if any).

— Second, we compute wetted panels for the current time step, which are lo-
cated under the surface calculated on the previous step.

— Finally, we calculate Froude—Krylov forces, acting on a ship hull.

These steps are repeated in infinite loop. Consequently, wavy surface is always
one time step behind the wetted panels. This inconsistency is a result of the
decision not to solve ship motions and fluid motions in one system of equations,
which would be too difficult to do.

Let us consider process of computing wavy surface in more detail. Since wavy
surface grid is irregular (i.e. we store a matrix of fluid particle positions that de-
scribe the surface), we compute the same formula for each point of the surface.
It is easy to do with C++ for CPU computation, but it takes some effort to
efficiently run this algorithm with GPU acceleration. Our first naive implemen-
tation was inefficient, but the second implementation that used local memory to
optimise memory loads and stores proved to be much more performant.

First, we optimised storage order of points making it fully sequential. Sequen-
tial storage order leads to sequential loads and stores from the global memory
and greatly improves performance of the graphical accelerator. Second, we use
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as many built-in vector functions as we can in our computations, since they are
much more efficient than manually written ones and compiler knows how to op-
timise them. This also decreases code size and prevents possible mistakes in the
manual implementation. Finally, we optimised how ship hull panels are read from
the global memory. One way to think about panels is that they are coefficients
in our model, as array of coefficients is typically read-only and constant. This
type of array is best placed in the constant memory of the graphical accelerator
that provides L2 cache for faster loads by parallel threads. However, our panel
array is too large to fit in constant memory, so we simulated constant memory
using local memory: we copied a small block of the array into local memory of
the multiprocessor, computed sum using this block and then proceeded to the
next block. This approach allowed to achieve almost 200-fold speedup over CPU
version of the solver.

A distinctive feature of the local memory is that it has the smallest latency,
at the same time sharing its contents between all computing units of the mul-
tiprocessor. Using local memory we reduce the number of load/store operations
to global memory, which has larger latency. As far as global memory bandwidth
remains a bottleneck, this kind of optimisation would improve performance. To
summarise, our approach to write code for graphical accelerators is the following:

— make storage order linear,

— use as many built-in vector operations as is possible,

— use local memory of the multiprocessor to optimise global memory load and
stores.

Following these simple rules, we can easily implement efficient algorithms.

3 Results

3.1 Diffraction

In the first experiment we use solution for infinite panel to simulate wave diffrac-
tion around Aurora’s ship hull (see fig. 1). In order to apply (6) to this problem
we use smoothing kernel that accumulates influence of every panel on a partic-
ular point of ocean surface:

1
w = Kjw;; Ki=———
; " T+ C-Gf

Here w; is solution (6) written for panel j, K, is smoothing kernel, (o is the
centre of the panel. In the centre of the panel K; = 0 and far from the ship hull
Kj — 0.

In the experiment waves with amplitude 1 approach the ship from the aft.
The results of the experiment are shown in fig. 2. Near the aft waves change
their direction to be tangent to the waterline curve, follow the curve to the bow,
and then restore their original direction. The amplitude of waves near the hull
is also increased.
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Fig. 1. Diogen, Aurora and MICW three-dimensional ship hull models.
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Fig. 2. Wave diffraction around Aurora’s hull (the hull is not shown). Top view.

3.2 Performance benchmarks

We implemented velocity potential solver using OpenMP for parallel computa-
tions on a processor and OpenCL for graphical accelerator. The solver uses single
precision floating point numbers. Benchmark results are presented in tab. 2.
We performed benchmarks for three ships: Diogen, Aurora and MICW. Dio-
gen is a small-size fishing vessel, Aurora is mid-size cruiser and MICW is a
large-size ship with small moment of inertia for the current waterline (fig. 1).
The main difference between the ships that affects benchmarks is the number of
panels into which the hull is decomposed. These numbers are shown in tab. 1.

Table 1. Parameters of ship hulls that were used in the benchmarks.

Diogen Aurora MICW

Length, m 60 126.5 260
Beam, m 15 16.8 32
Depth, m 15 14.5 31

No. of panels 4346 6335 9252

Benchmarks were performed using three workstations: DarkwingDuck, GPU-
lab, Capybara. DarkwingDuck is a laptop, GPUlab is a desktop workstation, and
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Capybara is a desktop with professional graphical accelerator server-grade pro-
cessor (tab. 3).

Table 2. Performance benchmarks results. Numbers represent average time in mil-
liseconds that is needed to generate waves with reflection.

Diogen Aurora ~ MICW

Node MP CL MP CL MP CL
DarkwingDuck 5462 48 7716 41 7725 11
GPUlab 5529 11 8222 10 6481 3
Capybara 2908 16 2091 8 2786 4

Table 3. Hardware configurations for benchmarks. For all benchmarks we used GCC
version 9.1.0 compiler and optimisation flags -03 -march=native.

GPU GFLOPS
Node CPU GPU Single Double
DarkwingDuck Intel i7-3630QM NVIDIA GT740M 622
GPUlab AMD FX-8370 NVIDIA GTX1060 4375 137

Capybara Intel E5-2630 v4 NVIDIA P5000 8873 277

4 Discussion

All the solutions obtained for various boundaries in this papre satisfy continuity
equation and equation of motion, but they are all written for plane surface
boundaries with different orientations. Typical ship hull three-dimensional model
is represented by triangulated surface, and in the centre of each triangular panel
fluid particle velocity vector does not depend on the surface normal of the other
panels. So, the solution for plane surface boundary is enough to compute fluid
velocity field directly on the surface boundary.

In order to generalise the solution for fluid velocity field near the surface
boundary, we need to calculate weighted average of reflection terms of each
underwater panel of the surface. Using inverse squared distance as the weight
gives acceptable results in our experiments, but may not be appropriate in others.

It is not clear how much we have to increase wave amplitude near the bound-
ary. One way to control the amptlitude increase is to introduce the coefficient
C into the reflection formula d, = d; — Cd; and before reflection term in (6).
When C = 1 the wave is fully reflected from the boundary and the amplitude is
doubled, when C = 0 no reflection occurres and the amplitude does not change.
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Performance benchmarks showed that graphical accelerator greatly improves
performance of velocity potential solver. Linear memory access patterns and
large amount of floating point operations make this solver an ideal candidate for
running on a graphical accelerator, and these features are the result of deriving
explicit solution for fluid motions near the ship hull boundary.

5 Conclusion

This paper proposes a new model for ocean wave diffraction near ship hull. This
model uses law of reflection to simulate incident and reflected waves and fluid
particle motion. Although, the solutions are written for infinite plane surfaces,
they can be used to compute fluid velocity at the centre of each triangle of the
triangulated ship hull surface and can be generalised to compute fluid velocity
near the ship hull using weighted sum over all panels.

The model was implemented in Virtual testbed velocity potential solver and
was found to be highly efficient on a graphical accelerator. Future work is to
incorporate radiation into the model and compare the solution to existing em-
pirical approaches.
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