
Functional programming interface for parallel
and distributed computing?

Ivan Petriakov[0000−0001−5835−9313] and
Ivan Gankevich*[0000−0001−7067−6928]

Saint Petersburg State University
7-9 Universitetskaya Emb., St Petersburg 199034, Russia

st049350@student.spbu.ru,
i.gankevich@spbu.ru,
https://spbu.ru/

Abstract. There are many programming frameworks and languages for
parallel and distributed computing which are successful both in indus-
try and academia, however, all of them are isolated and self-contained.
We believe that the main reason that there is no common denominator
between them is that there is no intermediate representation for dis-
tributed computations. For sequential computations we have bytecode
that is used as an intermediate, portable and universal representation of
a programme written in any language, but bytecode lacks an ability to
describe process communication. If we add this feature, we get low-level
representation on top of which all the frameworks and languages for par-
allel and distributed computations can be built. In this paper we explore
how such intermediate representation can be made, how it can reduce
programming effort and how it may simplify internal structure of existing
frameworks. We also demonstrate how high-level interface can be build
for a functional language that completely hides all the difficulties that a
programmer encounters when he or she works with distributed systems.

Keywords: · API · intermediate representation · C++ · Guile.

1 Introduction

There are many programming frameworks and languages for parallel and dis-
tributed computing [11, 12, 15–17] which are successful both in industry and
academia, however, all of them are isolated and self-contained. We believe that
the main reason that there is no common denominator between these frameworks
and languages is that there is no common protocol or low-level representation
for distributed computations. For sequential computations we have bytecode
(e.g. LLVM [9], Java bytecode, Guile bytecode) that is used as an intermediate,
portable and universal representation of a programme written in any language;
also we have assembler which is non-portable, but still popular intermediate

? Supported by Council for grants of the President of the Russian Federation (grant
no. MK-383.2020.9).

2 I. Petriakov et al.

representation. One important feature, that bytecode and assembler lack, is an
ability to communicate between parallel processes. This communication is the
common denominator on top of which all the frameworks and languages for par-
allel and distributed computations can be built, however, there is no universal
low-level representation that describes communication.

Why common low-level representation exists for sequential computations,
but does not exist for parallel and distributed ones? One of the reasons, which
applies to both distributed and parallel computations, is the fact that people still
think about programmes as sequences of steps — the same way as people them-
selves perform complex tasks. Imperative languages, in which programmes are
written as series of steps, are still prevalent in industry and academia; this is in
contrast to unpopular functional languages in which programmes are written as
compositions of functions with no implied order of computation. Another reason
which applies to distributed computations is the fact that these computations
are inherently unreliable and there is no universal approach for handling cluster
node failures. While imperative languages produce more efficient programmes,
they do not provide safety from deadlocks and fault tolerance guarantees. Also,
they are much more difficult to write, as a human have to work with mutable
state (local and global variables, objects etc.) and it is difficult to keep this
state in mind while writing the code. Functional languages minimise the usage
of mutable state, provide partial safety from deadlocks (under the assumption
that a programmer does not use locks manually) and can be modified to provide
fault tolerance. From the authors’ perspective people understand the potential
of functional languages, but have not yet realised this potential to get all their
advantages; people realised the full potential of imperative languages, but do not
know how to get rid of their disadvantages.

In this paper we describe low-level representation based on kernels which is
suitable for distributed and parallel computations. Kernels provide automatic
fault tolerance and can be used to exchange the data between programmes writ-
ten in different languages. We implement kernels in C++ and build a reference
cluster scheduler that uses kernels as the protocol to run applications that span
multiple cluster nodes. Then we use kernels as an intermediate representation for
Guile programming language, run benchmarks using the scheduler and compare
the performance of different implementations of the same programme.

To prevent ambiguity we use the term parallel to describe computations
that use several processor cores of single cluster node, the term distributed to
describe computations that use several cluster nodes and any number of cores
on each node, and term cluster to describe anything that refers to local cluster
(as opposed to geographically distributed clusters which are not studied in this
paper). Intermediate representation in our paper is a particular form of abstract
syntax tree, e.g. in functional languages continuation passing style is popular
intermediate representation of the code.

Functional programming interface 3

2 Methods

2.1 Parallel and distributed computing technologies as components
of unified system

In order to write parallel and distributed programmes the same way as we write
sequential programmes, we need the following components.

– Portable low-level representation of the code and the data and includes
means of decomposition of the code and the data into parts that can be
computed in parallel. The closest sequential counterpart is LLVM.

– Cluster scheduler that executes parallel and distributed applications and uses
the low-level representation to implement communication between these ap-
plications running on different cluster nodes. The closest single-node coun-
terpart is operating system kernel that executes user processes.

– High-level interface that wraps the low-level representation for existing pop-
ular programming languages in a form of a framework or a library. This
interface uses cluster scheduler, if it is available and node parallelism is
needed by the application, otherwise the code is executed on the local node
and parallelism is limited to the parallelism of the node. The closest single-
node counterpart is C library that provides an interface to system calls of
the operating system kernel.

These three components are built on top of each other as in classical object-
oriented programming approach, and all the complexity is pushed down to the
lowest layer: low-level representation is responsible for providing parallelism and
fault tolerance to the applications, cluster scheduler uses these facilities to pro-
vide transparent execution of the applications on multiple cluster nodes, and
high-level interface maps the underlying system to the target language to sim-
plify the work for application programmers.

High-performance computing technologies have the same three-component
structure: message passing library (MPI) is widely considered a low-level lan-
guage of parallel computing, batch job schedulers are used to allocate resources
and high-level interface is some library that is built on top of MPI; however,
the responsibilities of the components are not clearly separated and the hier-
archical structure is not maintained. MPI provides means of communication
between parallel processes, but does not provide data decomposition facilities
and fault tolerance guarantees: data decomposition is done either in high-level
language or manually, and fault tolerance is provided by batch job scheduler.
Batch jobs schedulers provide means to allocate resources (cluster nodes, pro-
cessor cores, memory etc.) and launch parallel MPI processes, but do not have
control over messages that are sent between these processes and do not control
the actual number of resources used by the programme (all resources are owned
exclusively by the programme, and the programme decides how to use them),
i.e. cluster schedulers and MPI programmes do not talk to each other after the
parallel processes were launched. Consequently, high-level interface is also sep-
arated from the scheduler. Although, high-level interface is built on top of the

4 I. Petriakov et al.

low-level interface, batch job scheduler is fully integrated with neither of them:
the cluster-wide counterpart of operating system kernel does not have control
over communication of the applications that are run on the cluster, but is used
as resource allocator instead.

The situation in newer big data technologies is different: there are the same
three components with hierarchical structure, but the low-level representation is
integrated in the scheduler. There is YARN cluster scheduler [14] with API that
is used as a low-level representation for parallel and distributed computing, and
there are many high-level libraries that are built on top of YARN [1,2,8,17]. The
scheduler has more control over job execution as jobs are decomposed into tasks
and execution of tasks is controlled by the scheduler. Unfortunately, the lack of
common low-level representation made all high-level frameworks that are built
on top of YARN API use their own custom protocol for communication, shift
responsibility of providing fault tolerance to the scheduler and shift responsibility
of data decomposition to higher level frameworks.

To summarise, the current state-of-the-art technologies for parallel and dis-
tributed computing can be divided into three classes: low-level representations,
cluster schedulers and high-level interfaces; however, responsibilities of each class
are not clearly separated by the developers of these technologies. Although, the
structure of the components resembles the operating system kernel and its ap-
plication interface, the components sometimes are not built on top of each other,
but integrated horizontally, and as a result the complexity of the parallel and
distributed computations is sometimes visible on the highest levels of abstrac-
tion.

Our proposal is to design a low-level representation that provides fault tol-
erance, means of data and code decomposition and means of communication
for parallel and distributed applications. Having such a representation at your
disposal makes it easy to build higher level components, because the complexity
of cluster systems is hidden from the programmer, the duplicated effort of im-
plementing the same facilities in higher level interfaces is reduced, and cluster
scheduler has full control of the programme execution as it speaks the same pro-
tocol and uses the same low-level representation internally: the representation is
general enough to describe any distributed programme including the scheduler
itself.

2.2 Kernels as objects that control the programme flow

In order to create low-level representation for parallel and distributed computing
we borrow familiar features from sequential low-level representations and aug-
ment them with asynchronous function calls and an ability to read and write
call stack frames.

In assembler and LLVM the programme is written in imperative style as a
series of processor instructions. The variables are stored either on the stack (a
special area of the computer’s main memory) or in processor registers. Logical
parts of the programme are represented by functions. A call to a function places

Functional programming interface 5

all function arguments on the stack and then jumps to the address of the func-
tion. When the function returns, the result of the computation is written to the
processor register and control flow is returned to the calling function. When the
main function returns, the programme terminates.

There are two problems with the assembler that need to be solved in order for
it to be useful in parallel and distributed computing. First, the contents of the
stack can not be copied between cluster nodes or saved to and read from the file,
because they often contain pointers to memory blocks that may be invalid on
another cluster node or in the process that reads the stack from the file. Second,
there is no natural way to express parallelism in this language: all function calls
are synchronous and all instructions are executed in the specified order. In order
to solve these problems we use object-oriented techniques.

We represent each stack frame with an object: local variables become ob-
ject fields, and each function call is decomposed into the code that goes before
function call, the code that performs function call, and the code that goes after.
The code that goes before the call is placed into act method of the object and
after this code the new object is created to call the function asynchronously. The
code that goes after the call is placed into react method of the object, and this
code is called asynchronously when the function call returns (this method takes
the corresponding object as an argument). The object also has read and write

methods that are used to read and write its fields to and from file or to copy
the object to another cluster node. In this model each object contains enough
information to perform the corresponding function call, and we can make these
calls in any order we like. Also, the object is self-contained, and we can ask
another cluster node to perform the function call or save the object to disk to
perform the call when the user wants to resume the computation (e.g. after the
computer is upgraded and rebooted).

The function calls are made asynchronous with help of thread pool. Each
thread pool consists of an object queue and an array of threads. When the
object is placed in the queue, one of the threads extracts it and calls act or
react method depending on the state of the object. There are two states that are
controlled by the programmer: when the state is upstream act method is called,
when the state is downstream react method of the parent object is called with
the current object as the argument. When the state is downstream and there is
no parent, the programme terminates.

We call these objects control flow objects or kernels for short. These objects
contain the input data in object fields, the code that processes this data in
object methods and the output data (the result of the computation) also in ob-
ject fields. The programmer decides which data is input and output. To reduce
network usage the programmer may delete input data when the kernel enters
downstream state: that way only output data is copied back to the parent ker-
nel over the network. The example programme written using kernels and using
regular function call stack is shown in table 1.

6 I. Petriakov et al.

int nested (int a) {
re turn 123 + a ;

}

struct Nested : public Kernel {
int r e s u l t ;
int a ;
Nested (int a) : a (a) {}
void act () override {

r e s u l t = a + 123 ;
async return () ;

}
} ;

void main () {
// code be f o r e
int r e s u l t = nested () ;
// code a f t e r
p r i n t (r e s u l t) ;

}

struct Main : public Kernel {
void act () override {

// code be f o r e
async call(new Nested) ;

}
void r e a c t (Kernel ∗ c h i l d) override {

int r e s u l t = ((Nested ∗) c h i l d)−> r e s u l t ;
// code a f t e r
p r i n t (r e s u l t) ;
async return () ;

}
} ;

void main () {
async call(new Main) ;
wait () ;

}

Table 1. The same programme written using regular function call stack (left) and ker-
nels (right). Here async call performs asynchronous function call by pushing the child
kernel to the queue, async return performs asynchronous return from the function call
by pushing the current kernel to the queue.

Functional programming interface 7

This low-level representation can be seen as an adaptation of classic function
call stack, but with asynchronous function calls and an ability to read and write
stack frames. These differences give kernels the following advantages.

– Kernels define dependencies between function calls, but do not define the
order of the computation. This gives natural way of expressing parallel com-
putations on the lowest possible level.

– Kernels can be written to and read from any medium: files, network con-
nections, serial connections etc. This allows to implement fault tolerance
efficiently using any existing methods: in order to implement checkpoints a
programmer no longer need to save memory contents of each parallel process,
only the fields of the main kernel are needed to restart the programme from
the last sequential step. However, with kernels checkpoints can be replaced
with simple restart: when the node to which the child kernel was sent fails,
the copy of this kernel can be sent to another node without stopping the
programme and no additional configuration from the programmer.

– Finally, kernels are simple enough to be used as an intermediate representa-
tion for high-level languages: either via a compiler modification, or via wrap-
per library that calls the low-level implementation directly. Kernels can not
replace LLVM or assembler, because their level of abstraction is higher, there-
fore, compiler modification is possible only for languages that use high-level
intermediate representation (e.g. LISP-like languages and purely functional
languages that have natural way of expressing parallelism by computing ar-
guments of functions in parallel).

2.3 Reference cluster scheduler based on kernels

Kernels are general enough to write any programme, and the first programme
that we wrote using them was cluster scheduler that uses kernels to implement its
internal logic and to run applications spanning multiple cluster nodes. Single-
node version of the scheduler is as simple as thread pool attached to kernel
queue described in section 2.2. The programme starts with pushing the first
(or main) kernel to the queue and ends when the main kernel changes its state
to downstream and pushes itself to the queue. The number of threads in the
pool equals the number of processor cores, but can be set manually to limit the
amount of parallelism. Cluster version of the scheduler is more involved and uses
kernels to implement its logic.

Cluster scheduler runs in a separate daemon process on each cluster node, and
processes communicate with each other using kernels: process on node A writes
some kernel to network connection with node B and process on node B reads the
kernel and performs useful operation with it. Here kernels are used like messages
rather than stack frames: kernel that always resides in node A creates child mes-
sage kernel and sends it to the kernel that always resides in node B. In order to
implement this logic we added point-to-point state and a field that specifies the
identifier of the target kernel. In addition to that we added source and destination
address fields to be able to route the kernel to the target cluster node and return

8 I. Petriakov et al.

it back to the source node: (parent-kernel, source-address) tuple uniquely iden-
tifies the location of the parent kernel, and (target-kernel,destination-address)
tuple uniquely identifies the location of the target kernel. The first tuple is also
used by downstream kernels that return back to their parents, but the second
tuple is used only by point-to-point kernels.

There are several responsibilities of cluster scheduler:

– run applications in child processes,
– route kernels between application processes running on different cluster nodes,
– maintain a list of available cluster nodes.

In order to implement them we created a kernel queue and a thread pool for
each concern that the scheduler has to deal with (see figure 1): we have

– timer queue for scheduled and periodic tasks,
– network queue for sending kernels to and receiving from other cluster nodes,
– process queue for creating child processes and sending kernels to and receiv-

ing from them, and
– the main processor queue for processing kernels in parallel using multiple

processor cores.

This separation of concerns allows us to overlap data transfer and data pro-
cessing: while the main queue processes kernels in parallel, process and network
queues send and receive other kernels. This approach leads to small amount of
oversubscription as separate threads are used to send and receive kernels, but
benchmarks showed that this is not a big problem as most of the time these
threads wait for the operating system kernel to transfer the data.

Processor
queue

Timer
queue

Disk
queue

Network
queue

Process
queue

CPU 0

CPU 1

Disk 0

Disk 1

Timer 0 NIC 0

NIC 1

Parent

Child

Fig. 1. Default kernel queues for each cluster scheduler concern.

Cluster scheduler runs applications in child processes; this approach is nat-
ural for UNIX-like operating systems as the parent process has full control of
its children: the amount of resources can be limited (the number of processor
cores, the amount of memory etc.) and the process can be terminated at any
time. After introducing child processes into the scheduler we added cluster-wide
source (target) application identifier field that uniquely identifies the source (the
target) application from which the kernel originated (to which the kernel was

Functional programming interface 9

sent). Also each kernel carries an application descriptor that specifies how to
run the application (command line arguments, environment variables etc.) and
if the corresponding process is not running, it is launched automatically by the
scheduler. Child processes are needed only as means of controlling resources us-
age: a process is a scheduling unit for operating system kernel, but in cluster
scheduler a child process performs something useful only when the kernel (which
is a unit of scheduling in our scheduler) is sent to the corresponding application
and launched automatically if there is no such application. Application spans
multiple cluster nodes and may have any number of child processes (but no
more than one process per node). These processes are launched on-demand and
do nothing until the kernel is received. This behaviour allows us to implement
dynamic parallelism: we do not need to specify the number of parallel processes
on application launch, the scheduler will automatically create them. To reduce
memory consumption stale processes, that have not received any kernel for a
long period of time, may be terminated (new processes will be created automat-
ically, when the kernel arrives anyway). Kernels can be sent from one application
to another by specifying different application descriptor.

Child process communicates with its parent using optimised child process
queue. If the parent process does not want to communicate, the child process
continues execution on the local node: the applications written using cluster
scheduler interface work correctly even when the scheduler is not available, but
use local node instead of the cluster.

Since the node may have multiple child processes, we may have a situation
when all of them try to use all processor cores, which will lead to oversubscrip-
tion and suboptimal performance. In order to solve this problem, we introduce
weight field which tells how many threads will be used by the kernel. The de-
fault is one thread for ordinary kernels and nought threads for cluster scheduler
kernels. Process queue tracks the total weight of the kernels that were sent to
child processes and queues incoming kernels if the weight reaches the number of
processor cores. Also, each cluster node reports this information to other nodes
for better load balancing decisions.

The scheduler acts as a router for the kernels: when the kernel is received from
the application, the scheduler analyses its fields and decides to which cluster node
it can be sent. If the kernel has downstream or point-to-point state, the kernel
is sent to the node where the target kernel resides; if the kernel has upstream
state, load balancing algorithm decides which node to send the kernel to. Load
balancing algorithm tracks the total weight of the kernels that were sent to
the specified node and also receives the same information from the node (in
case other nodes also send there their kernels), then it chooses the node with
the lowest weight and sends the kernel to this node. If all nodes are full, the
kernel is retained in the queue until the enough processor cores become available.
The algorithm is very conservative and does not use work-stealing for improved
performance, however, the fault tolerance is easier to implement [4, 5] when the
target and the source node fields do not change during kernel lifetime which is
not the case for work-stealing scenario.

10 I. Petriakov et al.

The last but not the least responsibility of the scheduler is to discover and
maintain a list of cluster nodes and establish persistent network connections to
neighbours. Cluster scheduler does this automatically by scanning the network
using efficient algorithm: the nodes in the network are organised in artificial tree
topology with the specified fan-out value and each node tries to communicate
with the nodes which are closer to the root of the tree. This approach significantly
reduces the number of data that needs to be sent over the network to find
all cluster nodes: in ideal case only one kernel is sent to and received from
the parent node. The algorithm is described in [6]. After the connections are
established, all the upstream kernels that are received from the applications’
child processes are routed to neighbour nodes in the tree topology (both parent
and child nodes). This creates a problem because the number of nodes “behind”
the parent node is generally different than the number of nodes behind the
child nodes. In order to solve this problem we track not only the total weight
of all kernels of the neighbour node, but the total weight of each node in the
cluster and sum the weight of all nodes that are behind the node A to compute
the total weight of node A for load balancing. Also, we apply load balancing
recursively: when the kernel arrives at the node, load balancing algorithm is
executed once more to decide whether the kernel can be sent locally or to another
cluster node (except the source node). This approach solves the problem, and
now applications can be launched not only on the root node, but on any node
without load balancing problems. This approach adds small overhead, as the
kernel goes through intermediate node, but if the overhead is undesirable, the
application can be launched on the root node. Node discovery and node state
updates are implemented using point-to-point kernels.

To summarise, cluster scheduler uses kernels as unit of scheduling and as com-
munication protocol between its daemon processes running on different cluster
nodes. Daemon process acts as an intermediary between application processes
running on different cluster nodes, and all application kernels are sent through
this process to other cluster nodes. Kernels that are sent through the sched-
uler are heavy-weight: they have more fields than local kernels and the routing
through the scheduler introduces multiple overheads compared to direct commu-
nication. However, using cluster scheduler hugely simplifies application develop-
ment, as application developer does not need to worry about networking, fault
tolerance, load balancing and “how many parallel processes are enough for my
application”: this is now handled by the scheduler. For maximum efficiency and
embedded applications the application can be linked directly to the scheduler to
be able to run in the same daemon process, that way application kernels are no
longer sent though daemon process and the overhead of the scheduler is minimal.

2.4 Parallel and distributed evaluation of Guile expressions using
kernels

Kernels low-level interface and cluster scheduler are written in C++ language.
From the authors’ perspective C is too low-level and Java has too much overhead

Functional programming interface 11

for cluster computing, whereas C++ is the middleground choice. The implemen-
tation is the direct mapping of the ideas discussed in previous sections on C++
abstractions: kernel is a base class (see listing 1.1) for all control flow objects with
common fields (parent, target and all others) and act, react, read, write vir-
tual functions that are overridden in subclasses. This direct mapping is natural
for a mixed-paradigm language like C++, but functional languages may benefit
from implementing the same ideas in the compiler or interpreter.

enum class s t a t e s {upstream , downstream , p o i n t t o p o i n t } ;

class ke rne l {
public :

virtual void act () ;
virtual void r e a c t (k e rne l ∗ c h i l d) ;
virtual void wr i t e (b u f f e r& out) const ;
virtual void read (b u f f e r& in) ;
k e rne l ∗ parent = n u l l p t r ;
k e rne l ∗ t a r g e t = n u l l p t r ;
s t a t e s s t a t e = s t a t e s : : upstream ;

} ;

class queue {
public :

void push (ke rne l ∗ k) ;
} ;

Listing 1.1. Public interface of the kernel and the queue classes in C++ (simplified
for clarity).

We made a reference implementation of kernels for Guile language [3]. Guile
is a dialect of Scheme [13] which in turn is a dialect of LISP [10]. The distinct
feature of LISP-like languages is homoiconicity, i.e. the code and the data is
represented by tree-like structure (lists that contain atoms or other lists as el-
ements). This feature makes it possible to express parallelism directly in the
language: every list element can be computed independently and it can be sent
to other cluster nodes for parallel computation. To implement parallelism we cre-
ated a Guile interpreter that evaluates every list element in parallel using kernels.
In practice this means that every argument of a procedure call (a procedure call
is also a list with the first element being the procedure name) is computed in
parallel. This interpreter is able to run any existing Guile programme (provided
that it does not use threads, locks and semaphores explicitly) and the output
will be the same as with the original interpreter, the programme will automat-
ically use cluster nodes for parallel computations, and fault tolerance will be
automatically provided by our cluster scheduler. From the authors’ perspective
this approach is the most transparent and safe way of writing parallel and dis-
tributed programmes with clear separation of concerns: the programmer takes
care of the application logic, and cluster scheduler takes care of the parallelism,
load balancing and fault tolerance.

12 I. Petriakov et al.

Our interpreter consists of standard read-eval-print loop out of which only
eval step uses kernels for parallel and distributed computations. Inside eval we
use hybrid approach for parallelism: we use kernels to evaluate arguments of
procedure calls and arguments of cons primitive asynchronously only if these
arguments contain other procedure calls. This means that all simple arguments
(variables, symbols, other primitives etc.) are computed sequentially without
creating child kernels.

Evaluating procedure calls and cons using kernels is enough to make map form
parallel, but we had to rewrite fold form to make it parallel. Our parallelism is
based on the fact that procedure arguments can be evaluated in parallel without
affecting the correctness of the procedure, however, evaluating arguments in
parallel in fold does not give speedup because of the nested fold and proc

calls: the next recursive call to fold waits until the call to proc completes.
Alternative procedure fold-pairwise does not have this deficiency, but is only
correct for proc that does not care about the order of the arguments (+, *

operators etc.). In this procedure we apply proc to successive pairs of elements
from the initial list, after that we recursively call fold-pairwise for the resulting
list. The iteration is continued until only one element is left in the list, then we
return this element as the result of the procedure call. This new procedure is also
iterative, but parallel inside each iteration. We choose map and fold forms to
illustrate automatic parallelism because many other forms are based on them [7].
Our implementation is shown in listing 1.2.

(define (map proc l s t) ” P a r a l l e l map.”
(i f (n u l l ? l s t) l s t

(cons (proc (car l s t)) (map proc (cdr l s t)))))
(define (f o l d proc i n i t l s t) ” Sequent i a l f o l d . ”

(i f (n u l l ? l s t) i n i t
(f o l d proc (proc (car l s t) i n i t) (cdr l s t))))

(define (do− fo ld−pairwise proc l s t)
(i f (n u l l ? l s t) ' ()

(i f (n u l l ? (cdr l s t)) l s t
(do− fo ld−pairwise proc

(cons (proc (car l s t) (car (cdr l s t)))
(do− fo ld−pairwise proc (cdr (cdr l s t))))))))

(define (f o ld−pa i rw i s e proc l s t) ” P a r a l l e l pa i rw i s e f o l d . ”
(car (do− fo ld−pairwise proc l s t)))

Listing 1.2. Parallel map and fold forms in Guile.

3 Results

We tested performance of our interpreter using the forms in listing 1.2. For each
form we applied synthetic procedure that sleeps 200 milliseconds to the list with
96 elements. Then we ran the resulting script using native Guile interpreter and
our interpreter and measured total running time for different number of threads.
For native Guile interpreter the running time of all forms is the same for any

Functional programming interface 13

number of threads. For our interpreter map and fold-pairwise forms run time
decreases with the number of threads and for fold form run time stays the same
(figure 2).

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12

T
im

e,
 s

No. of threads

map (Guile)

map (Guile + kernels)

fold (Guile)

fold (Guile + kernels)

fold-pairwise (Guile)

fold-pairwise (Guile + kernels)

Fig. 2. The run time of the forms from listing 1.2 for different number of parallel
threads and different interpreters.

4 Discussion

Computing procedure arguments in parallel is a natural way of expressing paral-
lelism in functional language, and in our tests the performance of the programme
is close to the one with manual parallelism. Lower performance is explained by
the fact that we introduce more overhead by using asynchronous kernels to com-
pute procedure arguments where this does not give large performance gains (even
with ideal parallelism with no overhead). If we remove these overheads we will
get the same time as the original programme with manual parallelism. This is
explained by the fact that the main loop of the programme is written as an
application of map form and our interpreter makes it parallel. Executing this
loop in parallel gives the largest performance gains compared to other parts of
the programme. We expect that the difference between automatic and manual
parallelism to be more visible in larger and more complex programmes, and in
future plan to benchmark more algorithms with known parallel implementations.

5 Conclusion

Using procedure arguments to define parallel programme parts gives new per-
spective on writing parallel programmes. In imperative languages programmers
are used to rearranging loops to optimise memory access patterns and help the
compiler vectorise the code, but with parallel-arguments approach in functional
languages they can rearrange the forms to help the interpreter to extract more

14 I. Petriakov et al.

parallelism. This parallelism is automatic and does not affect the correctness of
the programme (of course, you need to serialise access and modification of the
global variables). With help of kernels these parallel computations are extended
to distributed computations. Kernels provide standard way of expressing paral-
lel and distributed programme parts, automatic fault tolerance for master and
worker nodes and automatic load balancing via cluster scheduler. Together ker-
nels and arguments-based parallelism provide low- and high-level programming
interface for clusters and single nodes that conveniently hide the shortcomings
of parallel and distributed computations allowing the programmer to focus on
the actual problem being solved rather than fixing bugs in his or her parallel
and distributed code.

Future work is to re-implement LISP language features that are relevant
for parallelism in a form of C++ library and use this library for parallelism,
but implement the actual computations in C++. This would allow to improve
performance of purely functional programmes by using the functional language
for parallelism and imperative language for performance-critical code.

Acknowledgements. Research work is supported by Council for grants of the
President of the Russian Federation (grant no. MK-383.2020.9).

References

1. Apache Software Foundation: Hadoop, https://hadoop.apache.org
2. Apache Software Foundation: Storm, https://storm.apache.org
3. Galassi, M., Blandy, J., Houston, G., Pierce, T., Jerram, N., Grabmueller, M.:

Guile reference manual (2002)
4. Gankevich, I., Tipikin, Y., Korkhov, V.: Subordination: Providing resilience to

simultaneous failure of multiple cluster nodes. In: Proceedings of International
Conference on High Performance Computing Simulation (HPCS’17). pp. 832–838.
Institute of Electrical and Electronics Engineers (IEEE), NJ, USA (July 2017).
https://doi.org/10.1109/HPCS.2017.126

5. Gankevich, I., Tipikin, Y., Korkhov, V., Gaiduchok, V.: Factory: Non-
stop batch jobs without checkpointing. In: International Conference on High
Performance Computing Simulation (HPCS’16). pp. 979–984 (July 2016).
https://doi.org/10.1109/HPCSim.2016.7568441

6. Gankevich, I., Tipikin, Y., Gaiduchok, V.: Subordination: Cluster man-
agement without distributed consensus. In: International Conference on
High Performance Computing Simulation (HPCS). pp. 639–642 (2015).
https://doi.org/10.1109/HPCSim.2015.7237106

7. Hutton, G.: A tutorial on the universality and expressiveness of
fold. Journal of Functional Programming 9(4), 355–372 (1999).
https://doi.org/10.1017/S0956796899003500

8. Islam, M., Huang, A.K., Battisha, M., Chiang, M., Srinivasan, S., Peters, C., Neu-
mann, A., Abdelnur, A.: Oozie: Towards a scalable workflow management system
for hadoop. In: Proceedings of the 1st ACM SIGMOD Workshop on Scalable Work-
flow Execution Engines and Technologies. SWEET’12, Association for Computing
Machinery, New York, NY, USA (2012). https://doi.org/10.1145/2443416.2443420,
https://doi.org/10.1145/2443416.2443420

Functional programming interface 15

9. Lattner, C., Adve, V.: LLVM: A compilation framework for lifelong program
analysis & transformation. In: Proceedings of the International Symposium on
Code Generation and Optimization: Feedback-Directed and Runtime Optimiza-
tion. p. 75. CGO’04, IEEE Computer Society, USA (2004)

10. McCarthy, J.: Recursive functions of symbolic expressions and their com-
putation by machine, part i. Commun. ACM 3(4), 184–195 (Apr 1960).
https://doi.org/10.1145/367177.367199

11. Pinho, E.G., de Carvalho, F.H.: An object-oriented parallel programming language
for distributed-memory parallel computing platforms. Science of Computer Pro-
gramming 80, 65–90 (2014). https://doi.org/10.1016/j.scico.2013.03.014, special
section on foundations of coordination languages and software architectures (se-
lected papers from FOCLASA11)

12. Stewart, R., Maier, P., Trinder, P.: Transparent fault tolerance for scalable
functional computation. Journal of Functional Programming 26, e5 (2016).
https://doi.org/10.1017/S095679681600006X

13. Sussman, G.J., Steele, G.L.: The first report on scheme revisited.
Higher-Order and Symbolic Computation 11, 399–404 (12 1998).
https://doi.org/10.1023/A:1010079421970

14. Vavilapalli, V.K., Murthy, A.C., Douglas, C., Agarwal, S., Konar, M., Evans,
R., Graves, T., Lowe, J., Shah, H., Seth, S., Saha, B., Curino, C., O’Malley,
O., Radia, S., Reed, B., Baldeschwieler, E.: Apache Hadoop YARN: Yet
Another Resource Negotiator. In: Proceedings of the 4th Annual Sympo-
sium on Cloud Computing. pp. 1–16. SOCC’13, ACM, New York, NY, USA
(2013). https://doi.org/10.1145/2523616.2523633, http://doi.acm.org/10.1145/
2523616.2523633

15. Wilde, M., Hategan, M., Wozniak, J.M., Clifford, B., Katz, D.S., Foster, I.: Swift:
A language for distributed parallel scripting. Parallel Computing 37(9), 633–652
(2011)

16. Yu, Y., Isard, M., Fetterly, D., Budiu, M., Erlingsson, Ú., Gunda, P.K., Currey,
J.: DryadLINQ: A system for general-purpose distributed data-parallel computing
using a high-level language. Proc. LSDS-IR 8 (2009)

17. Zaharia, M., Xin, R.S., Wendell, P., Das, T., Armbrust, M., Dave, A., Meng, X.,
Rosen, J., Venkataraman, S., Franklin, M.J., Ghodsi, A., Gonzalez, J., Shenker,
S., Stoica, I.: Apache Spark: A unified engine for big data processing. Commun.
ACM 59(11), 56–65 (Oct 2016). https://doi.org/10.1145/2934664, https://doi.
org/10.1145/2934664

