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Abstract: Distributed computing clusters are often built with commodity
hardware which leads to periodic failures of processing nodes due to relatively low
reliability of such hardware. While worker node fault-tolerance is straightforward,
fault tolerance of master node poses a bigger challenge. In this paper master
node failure handling is based on the concept of master and worker roles that
can be dynamically re-assigned to cluster nodes along with maintaining a backup
of the master node state on one of worker nodes. In such case no special
component is needed to monitor the health of the cluster while master node
failures can be resolved except for the cases of simultaneous failure of master and
backup. We present experimental evaluation of the technique implementation,
show benchmarks demonstrating that a failure of a master does not affect running
job, and a failure of a backup results in re-computation of only the last job step.
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1 Introduction

Fault tolerance of data processing pipelines is one of the top concerns in development of
job schedulers for big data processing, however, most schedulers provide fault tolerance
for subordinate nodes only. These types of failures are routinely mitigated by restarting the
failed job or its part on healthy nodes, and failure of a master node is often considered either
improbable, or too complicated to handle and configure on the target platform. System
administrators often find alternatives to application level fault tolerance: they isolate master
node from the rest of the cluster by placing it on a dedicated machine, or use virtualisation
technologies instead. All these alternatives complexify configuration and maintenance, and
by decreasing probability of a machine failure resulting in a whole system failure, they
increase probability of a human error.

From such point of view it seems more practical to implement master node fault tolerance
at the application level, however, there is no generic implementation. Most implementations
are too tied to a particular application to become universally acceptable. We believe that
this happens due to people’s habit to think of a cluster as a collection of individual machines
each of which can be either master or slave, rather than to think of a cluster as a whole with
master and slave roles being dynamically assigned to a particular physical machine.
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This evolution in thinking allows to implement middleware that manages master and
slave roles automatically and handles node failures in a generic way. This software provides
an API to distribute parallel tasks on the pool of available nodes and among them. Using this
API one can write an application that runs on a cluster without knowing the exact number
of online nodes. The middleware is implemented as a daemon running on each cluster
node which acts as an intermediate point of communication for distributed applications and
transparently routes application messages between operating system processes running on
different cluster nodes.

The rest of the paper is organised as follows. In Section 2 we discuss how dynamic node
role assignment is implemented in state-of-the-art middleware systems and how hierarchical
dependencies between kernels help establish rules for restarting failed parts of a parallel
application. In Section 3 we describe programming model based on kernels — small
independent units of work — and an algorithm of handling master node failure. In Section
4 and 5 we present and discuss results of experiments that show validity of the proposed
approach and conclude the paper in Section 6.

The research for new fault-tolerance methods is motivated by the fact that the size
of large-scale computing systems (clusters and supercomputers) approaches critical point,
where the number of nodes is so large that probability of all nodes simultaneously working
without a faulure tends to nought. In other words, in future large-scale systems it is
highly probable that a parallel application experience node failure throughout its execution,
and tolerating this failure in a transparent way and without checkpointts will increase
performance of future parallel applications.

2 Related work

Dynamic role assignment is an emerging trend in design of distributed systems [26, 8, 5,
3, 21], however, it is still not used in big data job schedulers. For example, in popular
YARN [29] and Spark [30] job schedulers, which are used by Hadoop and Spark big data
analysis frameworks, master and slave roles are static. Failure of a slave node is tolerated
by restarting a part of a job on a healthy node, and failure of a master node is tolerated by
setting up standby reserved server [22]. Both master servers are coordinated by Zookeeper
service which itself uses dynamic role assignment to ensure its fault-tolerance [25]. So, the
whole setup is complicated due to Hadoop scheduler lacking dynamic roles: if dynamic
roles were available, Zookeeper would be redundant in this setup. Moreover, this setup does
not guarantee continuous operation of the master node because the standby server needs
time to recover current state after a failure.

The same problem occurs in high-performance computing where the master node of a
job scheduler is the single point of failure. In [27, 10] the authors use replication to make the
master node highly-available, but the backup server role is assigned statically and cannot be
delegated to a healthy worker node. This solution is closer to fully dynamic role assignment
than the high-availability solution for big data schedulers, because it does not involve using
external service to store configuration which should also be highly-available, however, it is
far from ideal solution where roles are completely decoupled from physical servers.

Finally, the simplest master node high-availability is implemented in Virtual Router
Redundancy Protocol (VRRP) [20, 18, 23]. Although VRRP protocol does provide master
and backup node roles, which are dynamically assigned to available routers, this protocol
works on top of the IPv4 and IPv6 protocols and is designed to be used by routers and
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reverse proxy servers. Such servers lack the state that needs to be restored upon a failure
(i.e. there is no job queue in web servers), so it is easier for them to provide high-availability.
On Linux it is implemented in Keepalived routing daemon [6].

In contrast to web servers and HPC and Big Data job schedulers, some distributed key-
value stores and parallel file systems have symmetric architecture, where master and slave
roles are assigned dynamically, so that any node can act as a master when the current master
node fails [26, 8, 5, 3, 21]. This design decision simplifies management and interaction with
a distributed system. From system administrator point of view it is much simpler to install
the same software stack on each node than to manually configure master and slave nodes.
Additionally, it is much easier to bootstrap new nodes into the cluster and decommission old
ones. From a user point of view, it is much simpler to provide web service high-availability
and load-balancing when you have multiple backup nodes to connect to.

Dynamic role assignment would be beneficial for Big Data job schedulers because
it allows to decouple distributed services from physical nodes, which is the first step to
build highly-available distributed service. The reason that there is no general solution to
this problem is that there is no generic programming environment to write and execute
distributed programmes. The aim of this work is to propose such an environment and to
describe its internal structure.

The programming model used in this work is partly based on the well-known actor
model of concurrent computation [2, 17]. Our model borrows the concept of actor — an
object that stores data and methods to process it; this object can react to external events
by either changing its state or producing more actors. We call this objects computational
kernels. Their distinct feature is hierarchical dependence on parent kernel that created each
of them, which allows implementing fault-tolerance by restarting failed subordinate kernel.

However, using hierarchical dependence alone is not enough to develop high-availability
of a master kernel — the first kernel in a parallel programme. To solve the problem the
other part of our programming model is based on bulk-synchronous parallel model [28]. It
borrows the concept of superstep — a sequential step of a parallel programme; at any time
a programme executes only one superstep, which allows implementing high-availability of
the first kernel (under assumption that it has only one subordinate at a time) by sending it
along its subordinate to a different cluster node thus making a distributed copy of it. Since
the first kernel has only one subordinate at a time, its copy is always consistent with the
original kernel. This eliminates the need for complex distributed transactions and distributed
consensus algorithms and guarantees protection from at most one master node failure per
superstep.

To summarise, the framework developed in this paper protects a parallel programme
from failure of any number of subordinate nodes and from one failure of a master node
per superstep. The paper does not answer the question of how to determine if a node has
failed, it assumes node failure when the network connection to a node is prematurely closed.
In general, the presented research goes in line with further development of the virtual
supercomputer concept coined and evaluated in [12, 13, 4].
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3 Methods

3.1 Model of computation

To infer fault tolerance model which is suitable for big data applications we use bulk-
synchronous parallel model [28] as the basis. This model assumes that a parallel programme
is composed of a number of sequential steps that are internally parallel, and global
synchronisation of all parallel processes occurs after each step. In our model all sequential
steps are pipelined where it is possible. The evolution of the computational model is
described as follows.

Given a programme that is sequential and large enough to be decomposed into a number
of sequential steps, the simplest way to make it run faster is to exploit data parallelism.
Usually it means finding multi-dimensional arrays and loops that access their elements and
trying to make them parallel. After transforming the loops the programme will still have
the same number of sequential steps, but every step will (ideally) be internally parallel.

After that the only possibility to speedup the programme is to overlap execution of code
blocks that work with different hardware devices. The most common pattern is to overlap
computation with network or disk I/O. This approach makes sense because all devices
operate with little synchronisation, and issuing commands in parallel makes the whole
programme perform better. This behaviour can be achieved by allocating a separate task
queue for each device and submitting tasks to these queues asynchronously with execution
of the main thread. After this optimisation the programme will be composed of a number
of steps chained into the pipeline, each step is implemented as a task queue for a particular
device.

Pipelining of otherwise sequential steps is beneficial not only for the code accessing
different devices, but for the code different branches of which are suitable for execution
by multiple hardware threads of the same core, i.e. branches accessing different regions of
memory or performing mixed arithmetic (floating point and integer). In other words, code
branches which use different modules of processor are good candidates to run in parallel
on a processor core with multiple hardware threads.

Even though pipelining may not add parallelism for a programme that uses only one
input file (or a set of input parameters), it adds parallelism when the programme can process
multiple input files: each input generates tasks which travel through the whole pipeline in
parallel with tasks generated by other inputs. With a pipeline an array of files is processed
in parallel by the same set of resources allocated for a batch job. The pipeline is likely to
deliver greater efficiency for busy HPC clusters compared to executing a separate job for
each input file, because the time that each subsequent job spends in the queue is eliminated.
A diagram of a pipeline is presented in fig. 1 and discussed in sec 4.

Computational model with a pipeline can be seen as bulk-asynchronous model, because
of the parallel nature of otherwise sequential execution steps. This model is the basis of the
fault-tolerance model developed here.

3.2 Programming model principles

Data processing pipeline model is based on the following principles that maximise efficiency
of a programme:
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• There is no notion of a message in the model, a kernel is itself a message that can be
sent over network to another node and directly access any kernel on the local node.
Only programme logic may guarantee the existence of the kernel.

• A kernel is a cooperative routine, which is submitted to the kernel pool upon the call
and is executed asynchronously by the scheduler. There can be any number of calls to
other subroutines inside routine body. Every call submits corresponding subroutine to
the kernel pool and returns immediately. Kernels in the pool can be executed in any
order; this fact is used by the scheduler to exploit parallelism offered by the computer
by distributing kernels from the pool across available cluster nodes and processor cores.

• Asynchronous execution prevents the use of explicit synchronisation after the call to
subroutine is made; the system scheduler returns the control flow to the routine each
time one of its subroutine returns. Such cooperation transforms each routine which
calls subroutines into an event handler, where each event is a subroutine and the handler
is the routine that called them.

• The routine may communicate with any number of local kernels, whose addresses
it knows; communication with kernels which are not adjacent in the call stack
complexifies the control flow and the call stack looses its tree shape. Only the
programme logic may guarantee the presence of communicating kernels in memory.
One way to ensure this is to perform communication between subroutines which
are called from the same routine. Since such communication is possible within the
hierarchy through the parent routine, it may be treated as an optimisation that eliminates
the overhead of transferring data over an intermediate node. The situation is different
for interactive or event-based programmes (e.g. servers and programmes with graphical
interface) in which this is primary type of communication.

• In addition to this, communication which does not occur along hierarchical links and
is executed over the cluster network complexifies the design of resiliency algorithms.
Since it is impossible to ensure that a kernel resides in memory of a neighbour node, a
node may fail in the middle of its execution of the corresponding routine. As a result,
upon a failure of a routine all of its subroutines must be restarted. This encourages a
programmer to construct

– deep tree hierarchies of tightly coupled kernels (which communicate on the same
level of hierarchy) to reduce overhead of recomputation;

– fat tree hierarchies of loosely coupled kernels, providing maximal degree of
parallelism.

Deep hierarchy is not only the requirement of technology; it helps optimise
communication of large number of cluster nodes reducing it to communication of
adjacent nodes.

Thus, kernels possess properties of both cooperative routines and event handlers.

3.3 Fail over model

Although fault-tolerance and high-availability are different terms, in essence they describe
the same property — an ability of a system to switch processing from a failed component
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to its live spare or backup component. In case of fault-tolerance it is the ability to switch
from a failed slave node to a spare one, i.e. to repeat computation step on a healthy slave
node. In case of high-availability it is the ability to switch from a failed master node to a
backup node with full recovery of execution state. These are the core abilities that constitute
distributed system’s ability to fail over.

The key feature that is missing in the current parallel programming and big data
processing technologies is a possibility to specify hierarchical (parent-child) dependencies
between parallel tasks (kernels). When one has such dependency, it is trivial to determine
which kernel should be responsible for re-executing a failed kernel on a healthy node. To re-
execute the kernel on the top of the hierarchy, its copy is created and executed on a different
node (detailed algorithm is discussed in sec. 3.5). There exists a number of engines that are
capable of executing directed acyclic graphs of kernels in parallel [1, 19], but graphs are
not suitable to infer parent-child relationship between kernels, because a node in the graph
may have multiple parent nodes.

3.4 Programming model

This work is based on the results of previous research: In [16, 15] we developed an algorithm
that allows to build a tree hierarchy from strictly ordered set of cluster nodes. The sole
purpose of this hierarchy is to make a cluster more fault-tolerant by introducing multiple
master nodes. If a master node fails, then its subordinates try to connect to another node from
the same or higher level of the hierarchy. If there is no such node, one of the subordinates
becomes the master. In [14] we developed a framework for big data processing without fault
tolerance, and here this framework is combined with fault-tolerance techniques described
in this paper.

Each programme that runs on top of the tree hierarchy is composed of computational
kernels—objects that contain data and code to process it. To exploit parallelism a kernel
may create arbitrary number of subordinate kernels which are automatically spread first
across available processor cores, second across subordinate nodes in the tree hierarchy. The
programme is itself a kernel (without a parent as it is executed by a user), which either solves
the problem sequentially on its own or creates subordinate kernels to solve it in parallel.

In contrast to HPC applications, in big data applications it is inefficient to run
computational kernels on arbitrary chosen nodes. More practical approach is to bind every
kernel to a file location in a parallel file system and transfer the kernel to that location
before processing the file. That way expensive data transfer is eliminated, and the file is
always read from a local drive. This approach is more deterministic compared to existing
ones, e.g. MapReduce framework runs jobs on nodes that are “close” to the file location,
but not necessarily the exact node where the file is located [7]. However, this approach
does not come without disadvantages: scalability of a big data application is limited by
the strategy that was employed to distribute its input files across cluster nodes. The more
nodes used to store input files, the more read performance is achieved. The advantage of our
approach is that the I/O performance is more predictable, than one of the hybrid approach
with streaming files over the network.

The main purpose of the model is to simplify the development of distributed batch
processing applications and middleware. The focus is to make an application resilient
to failures, i.e. make it fault tolerant and highly available, and do it transparently to a
programmer. The implementation is divided into two layers: the lower layer consists of
routines and classes for single node applications (with no network interactions), and the
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upper layer for applications that run on an arbitrary number of nodes. There are two kinds
of tightly coupled entities in the model — control flow objects (or kernels) and pipelines —
which are used together to compose a programme.

Kernels implement control flow logic in theirs act and react methods and store
the state of the current control flow branch. Both logic and state are implemented by a
programmer. In the act method some function is either directly computed or decomposed
into nested functions (represented by a set of subordinate kernels) which are subsequently
sent to a pipeline. In react method subordinate kernels that returned from the pipeline
are processed by their parent. Calls to act and react methods are asynchronous and are
made within threads attached to a pipeline. For each kernel act is called only once, and
for multiple kernels the calls are done in parallel to each other, whereas react method is
called once for each subordinate kernel, and all the calls are made in the same thread to
prevent race conditions (for different parent kernels different threads may be used).

Pipelines implement asynchronous calls to act and react, and try to make as many
parallel calls as possible considering concurrency of the platform (no. of cores per node
and no. of nodes in a cluster). A pipeline consists of a kernel pool, which contains all
the subordinate kernels sent by their parents, and a thread pool that processes kernels in
accordance with rules outlined in the previous paragraph. A separate pipeline is used for each
device: There are pipelines for parallel processing, schedule-based processing (periodic and
delayed tasks), and a proxy pipeline for processing of kernels on other cluster nodes.

In principle, kernels and pipelines machinery reflect the one of procedures and call
stacks, with the advantage that kernel methods are called asynchronously and in parallel to
each other (as much as programme logic allows). Kernel field is the stack, act method is
a sequence of processor instructions before nested procedure call, and react method is
a sequence of processor instructions after the call. Constructing and sending subordinate
kernels to the pipeline is nested procedure call. Two methods are necessary to make calls
asynchronous, and replace active wait for completion of subordinate kernels with passive
one. Pipelines, in turn, allow implementing passive wait, and call correct kernel methods
by analysing their internal state.

3.5 Handling master node failures

A possible way of handling a failure of a node where the first kernel is located (a master node)
is to replicate this kernel to a backup node, and make all updates to its state propagate to the
backup node by means of a distributed transaction. This approach requires synchronisation
between all nodes that execute subordinates of the first kernel and the node with the first
kernel itself. When a node with the first kernel goes offline, the nodes with subordinate
kernels must know what node is the backup one. However, if the backup node also goes
offline in the middle of execution of some subordinate kernel, then it is impossible for this
kernel to discover the next backup node to return to, because this kernel has not discovered
the unavailability of the master node yet. One can think of a consensus-based algorithm
to ensure that subordinate kernels always know where the backup node is, but distributed
consensus algorithms do not scale well to the large number of nodes and they are not
reliable [11]. So, consensus-based approach does not play well with asynchronous nature
of computational kernels as it may inhibit scalability of a parallel programme.

Fortunately, the first kernel usually does not perform operations in parallel, it is rather
sequentially launches execution steps one by one, so it has only one subordinate at a
time. Such behaviour is described by bulk-synchronous parallel programming model, in the
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Table 1 NDBC dataset properties.

Dataset size 144MB
Dataset size (uncompressed) 770MB
No. of wave stations 24
Time span 3 years (2010–2012)
Total no. of spectra 445422

framework of which a programme consists of sequential supersteps which are internally
parallel [28]. Keeping this in mind, we can simplify synchronisation of its state: we can
send the first kernel along with its subordinate to the subordinate node. When the node with
the first kernel fails, its copy receives its subordinate, and no execution time is lost. When
the node with its copy fails, its subordinate is rescheduled on some other node, and in the
worst case a whole step of computation is lost.

The described approach works only for kernels that do not have a parent and have only
one subordinate at a time, and act similar to manually triggered checkpoints. The advantage
is that they

• save results after each sequential step when memory footprint of a programme is low,

• they save only relevant data,

• and they use memory of a subordinate node instead of stable storage.

4 Evaluation

Master node fail over technique is evaluated on the example of wave energy spectra
processing application. This programme uses NDBC dataset [24] to reconstruct frequency-
directional spectra from wave rider buoy measurements and compute variance. Each
spectrum is reconstructed from five variables using the following formula [9].

S(ω, θ) =
1

π

[
1

2
+ r1 cos (θ − α1) + r2 sin (2 (θ − α2))

]
S0(ω).

Here ω denotes frequency, θ is wave direction, r1,2 and α1,2 are parameters of spectrum
decomposition and S0 is non-directional spectrum; r1,2, α1,2 and S0 are acquired through
measurements. Properties of the dataset which is used in evaluation are listed in Table 1.

The algorithm of processing spectra is as follows. First, current directory is recursively
scanned for input files. Data for all buoys is distributed across cluster nodes and each
buoy’s data processing is distributed across processor cores of a node. Processing begins
with joining corresponding measurements for each spectrum variables into a tuple, then for
each tuple frequency-directional spectrum is reconstructed and its variance is computed.
Results are gradually copied back to the machine where the application was executed and
when the processing is complete the programme terminates. A data processing pipeline
corresponding to the algorithm is presented in fig. 1.

In a series of test runs we benchmarked performance of the application in the presence
of different types of failures:

• failure of a master node (a node where the first kernel is run),
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Decompose by years

2011 2012 2013 Years

Decompose by station

s₁ … sₙ Stations

Read all variables

Remove incomplete datasets

Extract spectra

Remove incomplete datasets

Compute each part

Figure 1 Data processing pipeline of a programme.

Table 2 Test platform configuration.

CPU Intel Xeon E5440, 2.83GHz
RAM 4Gb
HDD ST3250310NS, 7200rpm
No. of nodes 12
No. of CPU cores per node 8
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Table 3 Benchmark parameters.

Experiment no. Master node Victim node Time to offline, s

1 root
2 root leaf 30
3 leaf leaf 30
4 leaf root 30
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3. Time with a master node failure

4. Time with a backup node failure

Figure 2 Performance of spectrum processing application in the presence of different types of
node failures.

• failure of a slave node (a node where spectra from a particular station are reconstructed)
and

• failure of a backup node (a node where the first kernel is copied).

A tree hierarchy with sufficiently large fan-out value was chosen to make all cluster nodes
connect directly to the first one so that only one master node exists in the cluster. In each run
the first kernel was launched on a different node to make mapping of kernel hierarchy to the
tree hierarchy optimal. A victim node was made offline after a fixed amount of time early
after the programme start. To make up for the node failure all data files have replicas stored
on different cluster nodes. All relevant parameters are summarised in Table 3 (here “root”
and “leaf” refer to a node in the tree hierarchy). The results of these runs were compared
to the run without node failures (Figure 2).

The benchmark showed that only a backup node failure results in significant performance
penalty, in all other cases the performance is roughly equals to the one without failures but
with the number of nodes minus one. It happens because the backup node not only stores
the copy of the state of the current computation step but executes this step in parallel with
other subordinate nodes. So, when a backup node fails, the master node executes the whole
step once again on arbitrarily chosen healthy subordinate node.

To measure how much time is lost due to a failure we divide the total execution time
with a failure by the total execution time without the failure but with the number of nodes
minus one. The results for this calculation are obtained from the same benchmark and are
presented in fig. 3. The difference in performance lies within 20% margin for the number of
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Figure 3 Slowdown of the spectrum processing application in the presence of different types of
node failures compared to execution without failures but with the number of nodes minus
one.

nodes less or equal to six. As is expected, the slowdown is noticable for the small number
of nodes, and performance penalty descreases for large number of nodes, as smaller portion
of execution state is lost. The picture is different for the number of nodes larger than six:
performance ratio fluctuates within 50% margin. The reason for such behaviour is that
spectrum processing application does not scale beyond six nodes, and the benchmark does
not give realiable results beyond this point.

5 Discussion

Described algorithm guarantees to handle one failure per computational step, more failures
can be tolerated if they do not affect the master node. The system handles simultaneous
failure of all subordinate nodes, however, if both master and backup nodes fail, there is no
chance for an application to survive. In this case the state of the current computation step
is lost, and the only way to restore it is to restart the application.

Computational kernels are means of abstraction that decouple a distributed application
from physical hardware: it does not matter how many nodes are online for an application
to run successfully. Computational kernels eliminate the need to allocate a physical backup
node to make the master node highly available, with computational kernels approach any
node can act as a backup one. Finally, computational kernels can handle subordinate node
failures in a way that is transparent to a programmer.

The disadvantage of this approach is evident: there is no way of making existing
middleware highly available without rewriting their source code. Although, our
programming framework is lightweight, it is not easy to map architecture of existing
middleware systems to it: most systems are developed keeping in mind static assignment
of server/client roles, which is not easy to make dynamic. Nevertheless, our approach may
simplify design of future middleware systems.
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6 Conclusion

Dynamic roles assignment is beneficial for Big Data applications and distributed systems
in general. It decouples architecture of a distributed system from underlying hardware
as much as possible, providing highly-available service on top of varying number of
physical machines. As much as virtualisation simplifies management and administration
of a computer cluster, our approach may simplify development of reliable distributed
applications which run on top of the cluster.
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