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Abstract. Numerical experiments in ship hydromechanics involve non-stationary inter-
action of a ship hull and wavy surface that include formation of vortices, surfaces of jet
discontinuities, and discontinuities in fluid under influence of negative pressure. These
physical phenomena occur not only near ship hull, but also at a distance where waves
break as a result of interference of sea waves and waves reflected from the hull. In the
study reported here we simulate wave breaking and reflection near the ship hull. We
use explicit numerical schemes to simulate propagation of large-amplitude sea waves and
their transformation after the impact with a ship. The problem reduces to determining
wave kinematics on a moving boundary of a ship hull and a free boundary of a computa-
tional domain. We build a grid of large particles having a form of a parallelepiped, and
in wave equation in place of velocity field we integrate streams of fluid represented by
functions as smooth as wavy surface elevation field. We assume that within boundaries
of computational domain waves do not disperse, i.e. their length and period stays the
same. Under this assumption we simulate trochoidal Gerstner waves of a particular pe-
riod. Wavy surface boundary have to satisfy Bernoulli equation: pressure on the surface
of the wave becomes non-constant, fluid particles drift in the upper layers of a fluid in
the direction of wave propagation, and vortices form as a result. The drift is simulated by
changing curvatures of particles trajectories based on the instantaneous change of wavy
surface elevation. This approach allows to simulate wave breaking and reflection near
ship hull. The goal of the research is to develop a new method of taking wave reflection
into account in ship motion simulations as an alternative to the classic method that uses
added masses.

1 Introduction

Ship and sea wavy surface motion do not have an abundance of geometric forms and physical phe-
nomena. Waves formation due to ship motion and interaction between ocean and atmosphere are
governed by continuity condition for heavy fluid and the law of conservation of energy.

Strict theoretical solution (and in fact the only solution) for large-amplitude wind waves on the sur-
face of heavy fluid was obtained in 1802 by Franz Josef von Gerstner — a professor from a university
in Prague [1]. Generic trochoidal wave mathematical model has large dispersion [2], the dependence
of the speed of wave propagation on their length and period. As a result
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Figure 1. Analytic solutions: progressive Gerstner wave (top), a wave with critical height — a standing wave
(bottom).

• wave energy propagation speed becomes half the visible phase velocity of wave crests,

• wave front constantly changes its phase, and

• wave are quantised into packets and wave transformation and propagation phenomena become non-
stationary.

2 Computational model of intense sea waves

Gerstner wave (fig. 1) is a cycloid, fluid particle trajectory radius rW = 1.134λWhW/4π [m] of which
is fixed relative to flat wavy surface level zW , hence z-coordinates of the crest and trough are the same.
Here λW is the wave length, hW — relative wave height defined on the interval [0..1] with hW = 1
being the maximum wave height for which the crest does not break (fig. 1). Vertical displacement of
a fluid particle is given by

ζZ = rW cos xW exp (−2πzW/λW ) [m] .

Horizontal displacement of the same fluid particle with respect to its initial position for progressive
wave is given by analogous equation, but with a shift by one fourth of the phase:

ζX = −rW sin xW exp (−2πzW/λW ) [m] .

Critical wave height of Gerstner waves (fig. 1) gives the correct ratio of wave height to wave length,
but 60 degree slope limit for standing wave with steepness ≈ 1/4 as well as 30 degree slope limit for
progressive (traveling) wave with steepness ≈ 1/7 are not correctly captured by the model.

State of the art mathematical and computational models do not simulate wave groups that are
integral part of ocean wavy surface motion. Our model, which is a modified version of Gertner wave,
includes wave groups. They are described as a dependency between fluid particle trajectory radius
and instantaneous displacement of the particle with respect to calm sea level (fig. 2).

We write adjusted radius as ARW = AKrW (cos xW − 1), where AK = [1, 0..
√

2] is radius coefficient
that makes wave crests cnoidal and raises mean sea level. We choose AK to be slightly less than 1



Figure 2. Simulation result: regular trochoidal waves with vertical displacement of sea level and wind stress on
the wave sea surface. Propagating wind waves (top), extremely high wind waves (bottom).

to reduce the effect of gusty winds on the wave form and prevent forming of cycloidal loops in wave
crests, that appear for waves with overly large amplitude, that may occur as a result of the interference
with waves heading from the opposite direction.

The pressure on windward slope of the wave is smaller, because wind slides on the surface of the
wave at a high speed and makes the slope more flat, while on the leeward slope of the wave wind
speed drops significantly or even goes to nought and creates vorticity.

The coefficient of wind stress W K (the parameter that was shifted by one fourth of the phase)
determines the assymmetry of steepness of windward and leeward slopes of the wave (fig. 2): WRW =
W KrW (sin xW − 1), where W K = [0..1]. The coefficient is close to unity for fresh wind waves and
close to nought for swell. For two-dimensional sea surface W K is used in dot product between wind
and wave direction vectors:

ζZ = rW cos xW exp
(
2π

[
−zW + rA

W K (cos xW − 1) + rW
W K sin xW

]
/λW

)
ζX = −rW sin xW exp

(
2π
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W K sin xW

]
/λW

)
.

Then energy conservation is defined by Bernoulli’s principle

ρV2

2
+ ρgζW = const,

[
N/m2

]
where particle velocity V contributes the most to balancing the pressure ρgζW on the wavy surface
down to nought for breaking waves.

3 Trochoidal wave groups

In our modified model we simulate two wavy surfaces simultaneously: one for regular waves with
normal length and one for waves with nine times higher length, that propagate under the same laws
but with two times less speed (fig. 3). The product of these surfaces allows to simulate wave groups.

On the first entry the profile of the long wave is given by specific smoothing function, the form of
which is close to phase wave profile. This function defines continuous change of wave front phase,
which is needed to simulate waves produced by the ship.



Figure 3. Trochoidal wave groups.

Figure 4. Large-amplitude trochoidal waves.

There is also a simpler approach to simulate wave groups: a superposition of regular waves with
slightly different periods propagating in the opposite directions. Interference of waves of comparable
lengths produces beats, in which nineth waves has double height and are standing waves. This ap-
proach generally gives satisfactory wavy surface, but does not work for waves produced by the ship,
because they have complex wave front.

4 Direct numerical simulation of sea waves

We use explicit numerical scheme to simulate sea wavy surface that satisfies continuity equation; we
call it direct numerical simulation (fig. 4). We use the following definitions for three sea wave systems,
that are used in the scheme.

• Fresh wind waves have a period of 6-8 seconds near the shore and up to 10-12 seconds in the ocean.
The height of the wave is close to critical, that typically corresponds to 6 on Beaufort scale with
wave crests greater than 5-6 metres.

• Fresh swell waves skew from mean wind direction by ≈ 30 degrees. When the storm in northern
hemisphere increases, wind direction goes counterclockwise and vice versa, i.e. the swell is always
present in the ocean. Swell waves are comparable to wind waves: their height is two times smaller
than critical wave height, and their length is 1.5-2 times greater.

• Old swell waves are long waves that come from higher latitudes. Their height is two times smaller
than than of wind waves and fresh swell, their length is two times greater, and their direction is
close to meridional (i.e. south in northern latitudes and vice versa1).

These waves may add up in unfavourable way to a wave with the height of 13-15 metres, however,
in real world mean wave height will be 8-10 metres. Wave groups have nineth wave with double
height, breaking crest and wave slope greater than 45 degrees.

1The wind blows into the compass rose, the waves propagate in the direction of the rose.



Figure 5. In the course of the simulation we visualise all three wave systems and create a view of ship hull
dynamics and sea wave profiles in a different convenient scale.

Oceanographers use well-established solutions [3] for regular progressive waves of arbitrary
shape. Using trochoidal waves as a source, we fix wave periods and speeds in time to satisfy con-
tinuity equation and energy conservation law. We simulate all three wave systems (described above)
simultaneously and indepedently (fig. 5) and add individual wavy surfaces together to produce the
resulting wavy surface.

5 Conclusion

We use explicit numerical schemes to simulate modified version of Gerstner waves. We simulate
particle drift in the upper fluid layers by changing the curvature of the trajectory depending on the
instantaneous change of wavy surface elevation. Our model is nonstationary, hence ship motions can
also be nonstationary. Computational power of a desktop computer is enough for performing such
simulations in real-time, and these types of simulations can even be performed on the board of the
ship to chose optimal and efficient mode of ship operation.
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