
Chapter 1
Simulation of standing and propagating sea waves
with three-dimensional ARMA model

Ivan Gankevich, Alexander Degtyarev

1.1 Introduction

Studying behaviour of a ship at sea is often based on some model of external
excitations — any disturbance that displaces the vessel from equilibrium —
major component of which is wind waves. Currently, the most popular sea
wave simulation models are based on the linear expansion of a stochastic
moving surface as a system of independent random variables. Such models
were studied by St. Denis & Pearson [1], Rosenblatt [2], Sveshnikov [3], and
Longuet—Higgins [4]. The most popular model is that of Longuet—Higgins
(LH), which approximates propagating sea waves as a superposition of el-
ementary harmonic waves with random phases εn and random amplitudes
cn:

ζ (x,y, t) = ∑
n

cn cos(unx+ vny−ωnt + εn), (1.1)

where the wave number (un,vn) is continuously distributed on the (u,v) plane,
i.e. the unit area du×dv contains an infinite number of wave numbers. The
frequency ωn associated with wave numbers (un,vn) is given by a dispersion
relation

ωn = ω(un,vn).

The phase εn are jointly independent random variables uniformly distributed
in the interval [0,2π].

Longuet—Higgins showed that under the above conditions, the function
ζ (x,y, t) is a three-dimensional steady-state homogeneous ergodic Gaussian
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field, defined by
2Eζ (u,v)dudv = ∑

n
c2

n,

where Eζ (u,v) is two-dimensional spectral density of wave energy.
Formula (1.1) is derived from equation of continuity and equation of mo-

tion for incompressible inviscid fluid. For ocean waves incompressibility and
isotropy of a fluid is assumed; since the motion of ocean waves is due to
gravitational forces, irrotational motion of the fluid is assumed which let us
introduce the velocity potential ϕ . Under these assumptions the equation of
continuity reduces to Laplace equation:

∆ϕ =
∂ 2ϕx

∂x2 +
∂ 2ϕy

∂y2 +
∂ 2ϕz

∂ z2 = 0.

The Laplace equation is linear and its solution can be found using Fourier
transforms. Thus, for plane waves a well-known solution is given in the form
of a definite integral [5]:

ϕ(x,z, t) =
∞∫

0

ekz [A(k, t)coskx+B(k, t)sinkx]dk.

A similar, but slightly more complicated solution is obtained for the three-
dimensional case. The constants A and B are determined from the boundary
conditions on the surface. In the linear formulation the equation of the wave
profile (which is derived from linearised kinematic boundary condition and
equation of motion, see sec. 1.4) is

ζ (x, t) =−1
g

∂ϕ(x,0, t)
∂ t

(1.2)

=

∞∫
0

[
∂A(k, t)

∂ t
coskx+

∂B(k, t)
∂ t

sinkx
]

dk

=

∞∫
0

Ct(k, t)cos(kx+ ε(k, t)) .

If we set cn = Ct(kn, t)dk, then wave model (1.1) may be associated with an
approximation of integral (1.2).

Although, LH model is based on simple linear wave theory and has
straightforward computational algorithm, it has some serious shortcomings.

• LH model is designed to represent a stationary Gaussian field. Normal
distribution of the simulated process (1.1) is a consequence of the central
limit theorem: its application to the analysis of storm or shallow water
waves represents a significant challenge.
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• LH model is periodic and need a large set of frequencies to perform long-
term simulation.

• In the numerical implementation of the LH model, it appears that conver-
gence rate of (1.1) is slow. This leads to a skewed simulated wave energy
spectrum and skewed cumulative distribution functions of various wave
parameters (heights, lengths, etc.). This problem becomes especially sig-
nificant when simulating complex sea waves that have a wide spectrum
with multiple peaks.

The latter point becomes particularly critical in long-term numerical sim-
ulation. In a time domain computation of the responses of a vessel in a
random seaway, the repeated evaluation of the apparently simple eq. (1.1) at
hundreds of points on the hull for thousands of time steps becomes a major
factor determining the execution speed of the code [6]. So, finding a less com-
putationally intensive method for modelling ocean waves has the potential
to increase performance of long-term simulation.

1.2 Related work

1.2.1 Ocean wave modelling

Another approach to simulating sea waves involves representing stochastic
moving surface as a linear transformation of white noise with memory, which
allows to model stationary ergodic Gaussian random process with given cor-
relation characteristics [7]. The first attempts to model two-dimensional dis-
turbances were undertaken in [8], which resulted in the development of the
resonance theory of wind waves, and the formal mathematical framework was
developed in [9, 10] — the authors built a one-dimensional model of ocean
waves based on autoregressive-moving average (ARMA) model.

One-dimensional ARMA model does not have some of the LH model de-
ficiencies: it is both computationally efficient and requires less number of
coefficients to converge. In [11] ARMA model is used to generate time series
spectrum of which is compatible with Pierson—Moskowitz (PM) approxima-
tion of ocean wave spectrum. The authors carry out experiments for one-
dimensional AR, MA and ARMA models. They mention excellent agreement
between target and initial spectra and higher performance of ARMA model
compared to models based on summing large number of harmonic compo-
nents with random phases. They also mention that in order to reach agree-
ment between target and initial spectrum MA model require lesser number
of coefficients than AR model. In [12] the authors generalise ARMA model
coefficients determination formulae for multi-variate case.

AR model was successfully applied to predict evolution of propagating
wave profiles based on instantaneous wave recordings. In [13] AR model is
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used to predict swell waves to control wave-energy converters (WEC) in real-
time. In order to make WEC more efficient its internal oscillator frequency
should match the one of ocean waves. The authors treat wave elevation as
time series and compare performance of AR model, neural networks and
cyclical models in forecasting time series future values. AR model gives the
most accurate prediction of low-frequency swell waves for up to two typical
wave periods. It is an example of successful application of AR process to
ocean wave modelling.

The feature that distinguishes present work with respect to afore-mentioned
ones is the study of three-dimensional (2D in space and 1D in time) ARMA
model, which is mostly a different problem.

1. Yule—Walker system of equations, which are used to determine AR coef-
ficients, has complex block-block structure.

2. Optimal model order (in a sense that target spectrum agrees with initial)
is determined manually.

3. Instead of PM spectrum, analytic formulae for standing and propagating
waves ACF are used as the model input.

4. Three-dimensional wavy surface should be compatible with real ocean sur-
face not only in terms of spectral characteristics, but also in the shape of
wave profiles. So, model verification includes distributions of various pa-
rameters of generated waves (lengths, heights, periods etc.).

Multi-dimensionality of investigated model not only complexifies the task, but
also allows to carry out visual validation of generated wavy surface. It is the
opportunity to visualise output of the programme that allowed to ensure that
generated surface is compatible with real ocean surface, and is not abstract
multi-dimensional stochastic process that is real only statistically.

1.2.2 Pressure field determination formulae

Small amplitude waves theory

In [14–16] the authors propose a solution for inverse problem of hydrody-
namics of potential flow within the framework of small-amplitude wave the-
ory (under assumption that wave length is much larger than height: λ ≫ h).
In that case inverse problem is linear and reduces to Laplace equation with
mixed boundary conditions, and equation of motion is solely used to deter-
mine pressures for calculated velocity potential derivatives. The assumption
of small amplitudes means the slow decay of wind wave coherence function,
i.e. small change of local wave number in time and space compared to the
wavy surface elevation (z coordinate). This assumption allows to calculate
elevation z derivative as ζz = kζ , where k is wave number. In two-dimensional
case the solution is written explicitly as
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∂ϕ
∂x

∣∣∣∣
x,t

=− 1√
1+α2

e−I(x)
x∫

0

∂ ζ̇/∂ z+αα̇√
1+α2

eI(x)dx, (1.3)

I(x) =
x∫

0

∂α/∂ z
1+α2 dx,

where α is wave slope. In three-dimensional case solution is written in the
form of elliptic partial differential equation (PDE):

∂ 2ϕ
∂x2

(
1+α2

x
)
+

∂ 2ϕ
∂y2

(
1+α2

y
)
+2αxαy

∂ 2ϕ
∂x∂y

+(
∂αx

∂ z
+αx

∂αx

∂x
+αy

∂αx

∂y

)
∂ϕ
∂x

+(
∂αy

∂ z
+αx

∂αy

∂x
+αy

∂αy

∂y

)
∂ϕ
∂y

+

∂ ζ̇
∂ z

+αxα̇x +αyα̇y = 0.

The authors suggest transforming this equation to finite differences and solve
it numerically.

As will be shown in sec. 1.4.3 that (1.3) diverges when attempted to calcu-
late velocity field for large amplitude waves, and this is the reason that it can
not be used together with ARMA model, that generates arbitrary amplitude
waves.

Linearisation of boundary condition

LH model allows to derive an explicit formula for velocity field by linearising
kinematic boundary condition. Velocity potential formula is written as

ϕ(x,y,z, t) = ∑
n

cng
ωn

e
√

u2
n+v2

nz sin(unx+ vny−ωnt + εn).

This formula is differentiated to obtain velocity potential derivatives, which
are plugged to dynamic boundary condition to obtain pressures.

1.3 Three-dimensional ARMA process as a sea wave simulation
model

ARMA ocean simulation model defines wavy surface as three-dimensional
(two dimensions in space and one in time) autoregressive moving average
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process: every surface point is represented as a weighted sum of previous in
time and space points plus weighted sum of previous in time and space nor-
mally distributed random impulses. The governing equation for 3-D ARMA
process is

ζi =
N

∑
j=0

Φjζi−j +
M

∑
j=0

Θjεi−j, (1.4)

where ζ — wave elevation, Φ — AR process coefficients, Θ — MA process
coefficients, ε — white noise with Gaussian distribution, N — AR process
order, M — MA process order, and Φ0 ≡ 0, Θ0 ≡ 0. Here arrows denote multi-
component indices with a component for each dimension. In general, any
scalar quantity can be a component (temperature, salinity, concentration of
some substance in water etc.). Equation parameters are AR and MA process
coefficients and order.

Any ARMA process can be uniquely represented as either MA or AR
process of infinite order [10], and the parameters of the spectral representation
are defined by the rule of division of power series (in a rational factorized
form [9]):

S(ω) =
∆σ 2

π

∏
m
(1− zme−imω∆ )(1− zmeimω∆ )

∏
n
(1− pne−inω∆ )(1− pneinω∆ )

,

where zm and pn are the zeros of numerator (MA), and denominator (AR),
respectively, which form a pair of mutually conjugate numbers. If some of
the zeros are located near the unit circle, then the spectral density will have
pronounced dips.

1.3.1 Autoregressive (AR) process

AR process is ARMA process with only one random impulse instead of their
weighted sum:

ζi =
N

∑
j=0

Φjζi−j + εi, j,k. (1.5)

The coefficients Φ are calculated from auto-covariate function (ACF) via
three-dimensional Yule—Walker (YW) equations, which are obtained after
multiplying both parts of the previous equation by ζi−k and computing the
expected value. Generic form of YW equations is

γk =
N

∑
j=0

Φj γk−j +σ2
ε δk, δk =

{
1, if k = 0
0, if k ̸= 0,

(1.6)
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where γ — ACF of process ζ , σ2
ε — white noise variance. Matrix form of

three-dimensional YW equations, which is used in the present work, is

Γ


Φ0
Φ0,0,1
...

ΦN

=


γ0,0,0 −σ2

ε
γ0,0,1
...

γN

 , Γ =


Γ0 Γ1 · · · ΓN1

Γ1 Γ0
. . . ...

... . . . . . . Γ1
ΓN1 · · · Γ1 Γ0

 ,

where N = (p1, p2, p3) and

Γi =


Γ 0

i Γ 1
i · · · Γ N2

i

Γ 1
i Γ 0

i
. . . ...

... . . . . . . Γ 1
i

Γ N2
i · · · Γ 1

i Γ 0
i

 Γ j
i =


γi, j,0 γi, j,1 · · · γi, j,N3

γi, j,1 γi, j,0
. . . x

...
... . . . . . . γi, j,1

γi, j,N3 · · · γi, j,1 γi, j,0

 ,

Since Φ0 ≡ 0, the first row and column of Γ can be eliminated. Matrix Γ is
block-toeplitz, positive definite and symmetric, hence the system is efficiently
solved by Cholesky decomposition, which is particularly suitable for these
types of matrices.

After solving this system of equations white noise variance is estimated
from (1.6) by plugging k = 0:

σ2
ε = σ2

ζ −
N

∑
j=0

Φj γj.

1.3.2 Moving average (MA) process

MA process is ARMA process with Φ ≡ 0:

ζi =
M

∑
j=0

Θjεi−j. (1.7)

MA coefficients Θ are defined implicitly via the following non-linear system
of equations:

γi =

[
M

∑
j=i

ΘjΘj−i

]
σ2

ε .

The system is solved numerically by fixed-point iteration method via the
following formulae

Θi =− γ0
σ2

ε
+

M

∑
j=i

ΘjΘj−i.
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Here coefficients Θ are calculated from back to front: from i = M to i = 0.
White noise variance is estimated by

σ2
ε =

γ0

1+
M
∑

j=0
Θ 2

j

.

Authors of [7] suggest using Newton—Raphson method to solve this equation
with higher precision, however, this method does not work in three dimen-
sions. Using slower method does not have dramatic effect on the overall pro-
gramme performance, because the number of coefficients is small and most
of the time is spent generating wavy surface.

1.3.3 Mixed autoregressive moving average (ARMA) process

Generally speaking, ARMA process is obtained by plugging MA generated
wavy surface as random impulse to AR process, however, in order to get
the process with desired ACF one should re-compute AR coefficients before
plugging. There are several approaches to ”mix” AR and MA processes.

• The approach proposed in [7] which involves dividing ACF into MA and
AR part along each dimension is not applicable here, because in three
dimensions such division is not possible: there always be parts of the ACF
that are not taken into account by AR and MA process.

• The alternative approach is to use the same (undivided) ACF for both
AR and MA processes but use different process order, however, then re-
alisation characteristics (mean, variance etc.) become skewed: these are
characteristics of the two overlapped processes.

For the first approach there is a formula to re-compute ACF for AR process,
but there is no such formula for the second approach. So, the best solution
for now is to simply use AR and MA process exclusively for different types
of waves.

1.3.4 Process selection criteria for different wave profiles

One problem of ARMA model application to ocean wave generation is that
for different types of wave profiles different processes must be used: standing
waves are modelled by AR process, and propagating waves by MA process.
This statement comes from practice: if one tries to use the processes the
other way round, the resulting realisation either diverges or does not corre-
spond to real ocean waves. So, the best way to apply ARMA model to ocean
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wave generation is to use AR process for standing waves and MA process for
progressive waves.

The other problem is inability to automatically determine optimal num-
ber of coefficients for three-dimensional AR and MA processes. For one-
dimensional processes this can be achieved via iterative methods [7], but
they diverge in three-dimensional case.

The final problem, which is discussed in 1.3.3, is inability to ”mix” AR
and MA process in three dimensions.

In practice some statements made for AR and MA processes in [7] should
be flipped for three-dimensional case. For example, the authors say that ACF
of MA process cuts at q and ACF of AR process decays to nought infinitely,
but in practice making ACF of 3-dimensional MA process not decay results
in it being non-invertible and producing realisation that does not look like
real ocean waves, whereas doing the same for ACF of AR process results in
stationary process and adequate realisation. Also, the authors say that one
should allocate the first q points of ACF to MA process (as it often needed
to describe the peaks in ACF) and leave the rest points to AR process, but
in practice in case of ACF of a propagating wave AR process is stationary
only for the first time slice of the ACF, and the rest is left to MA process.

To summarise, the only established scenario of applying ARMA model
to ocean wave generation is to use AR process for standing waves and MA
process for propagating waves. With a new formulae for 3 dimensions a single
mixed ARMA process might increase model precision, which is one of the
objectives of the future research.

1.3.5 The shape of ACF for different types of waves

Analytic method of finding the ACF

The straightforward way to find ACF for a given ocean wave profile is to apply
Wiener—Khinchin theorem. According to this theorem the autocorrelation
K of a function ζ is given by the Fourier transform of the absolute square of
the function:

K(t) = F
{
|ζ (t)|2

}
. (1.8)

When ζ is replaced with actual wave profile, this formula gives you analytic
formula for the corresponding ACF.

For three-dimensional wave profile (2D in space and 1D in time) analytic
formula is a polynomial of high order and is best obtained via symbolic
computation programme. Then for practical usage it can be approximated
by superposition of exponentially decaying cosines (which is how ACF of a
stationary ARMA process looks like [7]).
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Empirical method of finding the ACF

However, for three-dimensional case there exists simpler empirical method
which does not require sophisticated software to determine shape of the ACF.
It is known that ACF represented by exponentially decaying cosines satisfies
first order Stokes’ equations for gravity waves [17]. So, if the shape of the wave
profile is the only concern in the simulation, then one can simply multiply it
by a decaying exponent to get appropriate ACF. This ACF does not reflect
other wave profile parameters, such as wave height and period, but opens
possibility to simulate waves of a particular non-analytic shape by ”drawing”
their profile, then multiplying it by an exponent and using the resulting
function as ACF. So, this empirical method is imprecise but offers simpler
alternative to Wiener—Khinchin theorem approach; it is mainly useful to
test ARMA model.

Standing wave ACF

For three-dimensional plain standing wave the profile is given by

ζ (t,x,y) = Asin(kxx+ kyy)sin(σt). (1.9)

Find ACF via analytic method. Multiplying the formula by a decaying ex-
ponent (because Fourier transform is defined for a function f that f −→

x→±∞
0)

yields

ζ (t,x,y) = Aexp [−α(|t|+ |x|+ |y|)]sin(kxx+ kyy)sin(σt). (1.10)

Then, apply 3D Fourier transform to the both sides of the equation via sym-
bolic computation programme, fit the resulting polynomial to the following
approximation:

K(t,x,y) = γ exp [−α(|t|+ |x|+ |y|)]cosβ t cos [βx+βy] . (1.11)

So, after applying Wiener—Khinchin theorem we get initial formula but with
cosines instead of sines. This difference is important because the value of ACF
at (0,0,0) equals to the ARMA process variance, and if one used sines the
value would be wrong.

If one tries to replicate the same formula via empirical method, the usual
way is to adapt (1.10) to match (1.11). This can be done either by chang-
ing the phase of the sine, or by substituting sine with cosine to move the
maximum of the function to the origin of coordinates.
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Propagating wave ACF

Three-dimensional profile of plain propagating wave is given by

ζ (t,x,y) = Acos(σt + kxx+ kyy). (1.12)

For the analytic method repeating steps from the previous two paragraphs
yields

K(t,x,y) = γ exp [−α(|t|+ |x|+ |y|)]cos [β (t + x+ y)] . (1.13)

For the empirical method the wave profile is simply multiplied by a decaying
exponent without need to adapt the maximum value of ACF (as it is required
for standing wave).

Comparison of studied methods

To summarise, the analytic method of finding ocean wave’s ACF reduces to
the following steps.

• Make wave profile decay when approaching ±∞ by multiplying it by a
decaying exponent.

• Apply Fourier transform to the absolute square of the resulting equation
using symbolic computation programme.

• Fit the resulting polynomial to the appropriate ACF approximation.

Two examples in this section showed that in case of standing and propa-
gating waves their decaying profiles resemble the corresponding ACFs with
the exception that the ACF’s maximum should be moved to the origin to pre-
serve simulated process variance. Empirical method of finding ACF reduces
to the following steps.

• Make wave profile decay when approaching ±∞ by multiplying it by a
decaying exponent.

• Move maximum value of the resulting function to the origin by using
trigonometric identities to shift the phase.

1.3.6 Evaluation and discussion

In [18–20] for AR model the following items were verified experimentally:

• probability distributions of different wave characteristics (wave heights,
lengths, crests, periods, slopes, three-dimensionality),

• dispersion relation,
• retention of integral characteristics for mixed wave sea state.
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In this work we repeat probability distribution tests for three-dimensional
AR and MA model.

In [9] the authors show that several ocean wave characteristics (listed in
table 1.1) have Weibull distribution, and wavy surface elevation has Gaussian
distribution. In order to verify that distributions corresponding to generated
realisation are correct, quantile-quantile plots are used (plots where analytic
quantile values are used for OX axis and estimated quantile values for OY
axis). If the estimated distribution matches analytic then the graph has the
form of the straight line. Tails of the graph may diverge from the straight line,
because they can not be reliably estimated from the finite-size realisation.
Different methods of extracting waves from realisation produce variations in
quantile function tails, it is probably impractical to extract every possible
wave from realisation since they may (and often) overlap.

Characteristic Weibull shape (k)
Wave height 2
Wave length 2.3
Crest length 2.3
Wave period 3
Wave slope 2.5
Three-dimensionality 2.5

Table 1.1 Values of Weibull shape parameter for different wave characteristics.

Verification was performed for standing and propagating waves. The cor-
responding ACFs and quantile-quantile plots of wave characteristics distri-
butions are shown in fig. , , .

Graph tails in fig. deviate from original distribution for individual wave
characteristics, because every wave have to be extracted from the resulting
wavy surface to measure its length, period and height. There is no algorithm
that guarantees correct extraction of all waves, because they may overlap
each other. Weibull distribution right tail represents infrequently occurring
waves, so it deviates more than left tail.

Degree of correspondence for standing waves (fig. ) is lower for height and
length, is roughly the same for surface elevation and is higher for wave period
distribution tails. Lower correspondence degree for length and height may be
attributed to the fact that Weibull distributions were obtained empirically
for ocean waves which are typically propagating, and distributions may be
different for standings waves. Higher correspondence degree for wave periods
is attributed to the fact that wave periods of standing waves are extracted
more precisely as the waves do not move outside simulated wavy surface re-
gion. The same correspondence degree for wave elevation is obtained, because
this is the characteristic of the wavy surface (and corresponding AR or MA
process) and is not affected by the type of waves.
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ARMA model, owing to its non-physical nature, does not have the notion
of ocean wave; it simulates wavy surface as a whole instead. Motions of indi-
vidual waves and their shape are often rough, and the total number of waves
can not be determined precisely. However, integral characteristics of wavy
surface match the ones of real ocean waves.

Theoretically, ocean waves themselves can be chosen as ACFs, the only
pre-processing step is to make them decay exponentially. This may allow to
generate waves of arbitrary profiles, and is one of the directions of future
work.

1.4 Determining wave pressures for discretely given wavy surface

Analytic solutions to boundary problems in classical equations are often used
to study different properties of the solution, and for that purpose general so-
lution formula is too difficult to study, as it contains integrals of unknown
functions. Fourier method is one of the methods to find analytic solutions
to a PDE. It is based on application of Fourier transform to each part of
PDE, which reduces the equation to algebraic, and the solution is written as
inverse Fourier transform of some function (which may contain Fourier trans-
forms of other functions). Since, it is not possible to write analytic forms of
these Fourier transforms in all cases, unique solutions are found and their
behaviour is studied in different domains instead. At the same time, comput-
ing discrete Fourier transforms on the computer is possible for any discretely
defined function and efficient when using FFT algorithms. These algorithms
use symmetry of complex exponentials to decrease asymptotic complexity
from O(n2) to O(n log2 n). So, even if general solution contains Fourier trans-
forms of unknown functions, they still can be computed numerically, and
FFT family of algorithms makes this approach efficient.

Alternative approach to solve a PDE is to reduce it to difference equations,
which are solved by constructing various numerical schemes. This approach
leads to approximate solution, and asymptotic complexity of corresponding
algorithms is comparable to that of FFT. For example, stationary elliptic
PDE transforms to implicit numerical scheme which is solved by iterative
method on each step of which a tridiagonal or five-diagonal system of alge-
braic equations is solved via Thomas algorithm. Asymptotic complexity of
this approach is O(nm), where n — number of wavy surface grid points, m —
number of iterations. Despite their wide spread, iterative algorithms are in-
efficient on parallel computer architectures; in particular, their mapping to
co-processors may involve copying data in and out of the co-processor in
each iteration, which negatively affects their performance. At the same time,
high number of Fourier transforms in the solution is an advantage, rather
than a disadvantage. First, solutions obtained by Fourier method are ex-
plicit, hence their implementations scales with the large number of parallel
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computer cores. Second, there are implementations of FFT optimised for dif-
ferent processor architectures as well as co-processors (GPU, MIC) which
makes it easy to get high performance on any computing platform. These ad-
vantages substantiate the choice of Fourier method to obtain explicit analytic
solution to the problem of determining pressures under wavy ocean surface.

The problem of finding pressure field under wavy sea surface represents
inverse problem of hydrodynamics for incompressible inviscid fluid. System
of equations for it in general case is written as [5]

∇2ϕ = 0,

ϕt +
1
2
|υ |2 +gζ =− p

ρ
, at z = ζ (x,y, t), (1.14)

Dζ = ∇ϕ ·n, at z = ζ (x,y, t),

where ϕ — velocity potential, ζ — elevation (z coordinate) of wavy surface,
p — wave pressure, ρ — fluid density, υ = (ϕx,ϕy,ϕz) — velocity vector,
g — acceleration of gravity, and D — substantial (Lagrange) derivative. The
first equation is called continuity (Laplace) equation, the second one is the
conservation of momentum law (the so called dynamic boundary condition);
the third one is kinematic boundary condition for free wavy surface, which
states that rate of change of wavy surface elevation (Dζ ) equals to the change
of velocity potential derivative along the wavy surface normal (∇ϕ ·n).

Inverse problem of hydrodynamics consists in solving this system of equa-
tions for ϕ . In this formulation dynamic boundary condition becomes an
explicit formula to determine pressure field using velocity potential deriva-
tives obtained from the remaining equations. So, from mathematical point
of view inverse problem of hydrodynamics reduces to Laplace equation with
mixed boundary condition — Robin problem.

1.4.1 Two-dimensional case

Formula for infinite depth fluid

Two-dimensional Laplace equation with Robin boundary condition is written
as

ϕxx +ϕzz = 0, (1.15)

ζt +ζxϕx =
ζx√

1+ζ 2
x

ϕx −ϕz, at z = ζ (x, t).

Use Fourier method to solve this problem. Applying Fourier transform to
both sides of the equation yields
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−4π2 (u2 + v2)Fu,v{ϕ(x,z)}= 0,

hence v = ±iu. Hereinafter we use the following symmetric form of Fourier
transform:

Fu,v{ f (x,y)}=
∞∫∫

−∞

f (x,y)e−2πi(xu+yv)dxdy.

We seek solution in the form of inverse Fourier transform ϕ(x,z)=F−1
x,z {E(u,v)}.

Plugging1 v = iu into the formula yields

ϕ(x,z) = F−1
x

{
e2πuzE(u)

}
. (1.16)

In order to make substitution z= ζ (x, t) not interfere with Fourier transforms,
we rewrite (1.16) as a convolution:

ϕ(x,z) = D1 (x,z)∗F−1
x {E(u)} ,

where D1 (x,z) — a function, form of which is defined in sec. 1.5.3 and which
satisfies equation Fu{D1 (x,z)}= e2πuz. Plugging formula ϕ into the boundary
condition yields

ζt = (i f (x)−1)
[
D1 (x,z)∗F−1

x {2πuE(u)}
]
,

where f (x) = ζx/
√

1+ζ 2
x − ζx. Applying Fourier transform to both sides of

this equation yields formula for coefficients E:

E(u) =
1

2πu
Fu{ζt/(i f (x)−1)}

Fu{D1 (x,z)}

Finally, substituting z for ζ (x, t) and plugging resulting equation into (1.16)
yields formula for ϕ(x,z):

ϕ(x,z) = F−1
x

{
e2πuz

2πu
Fu{ζt/(i f (x)−1)}
Fu{D1 (x,ζ (x, t))}

}
. (1.17)

Multiplier e2πuz/(2πu) makes a graph of a function to which Fourier trans-
form is applied asymmetric with respect to OY axis. This makes it difficult
to apply FFT which expects periodic function with nought on both ends of
the interval. Using numerical integration instead of FFT is not faster than
solving the initial system of equations with numerical schemes. This problem
is alleviated by using formula (1.19) for finite depth fluid with wittingly large
depth h. This formula is derived in the following section.

1 v = −iu is not applicable because velocity potential must go to nought when depth
goes to infinity.
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Formula for finite depth fluid

On the sea bottom vertical fluid velocity component equals nought: ϕz = 0 on
z = −h, where h — water depth. In this case equation v = −iu, which came
from Laplace equation, can not be neglected, hence the solution is sought in
the following form:

ϕ(x,z) = F−1
x

{(
C1e2πuz +C2e−2πuz)E(u)

}
. (1.18)

Plugging ϕ into the boundary condition on the sea bottom yields

C1e−2πuh −C2e2πuh = 0,

hence C1 = 1
2Ce2πuh and C2 = − 1

2Ce−2πuh. Constant C may take arbitrary
value here, because after plugging it becomes part of unknown coefficients
E(u). Plugging formulae for C1 and C2 into (1.18) yields

ϕ(x,z) = F−1
x {cosh(2πu(z+h))E(u)} .

Plugging ϕ into the boundary condition on the free surface yields

ζt = f (x)F−1
x {2πiucosh(2πu(z+h))E(u)}−F−1

x {2πusinh(2πu(z+h))E(u)} .

Here sinh and cosh give similar results near free surface, and since this is the
main area of interest in practical applications, we assume that cosh(2πu(z+h))≈
sinh(2πu(z+h)). Performing analogous to the previous section transforma-
tions yields final formula for ϕ(x,z):

ϕ(x,z, t) = F−1
x

{
cosh(2πu(z+h))

2πu
Fu{ζt/(i f (x)−1)}
Fu{D2 (x,ζ (x, t))}

}
, (1.19)

where D2 (x,z) — a function, form of which is defined in sec. 1.5.3 and which
satisfies equation Fu{D2 (x,z)}= cosh(2πuz).

Reducing to the formulae from linear wave theory

Check the validity of derived formulae by substituting ζ (x, t) with known
analytic formula for plain waves. Symbolic computation of Fourier transforms
in this section were performed in Mathematica [21]. In the framework of
linear wave theory assume that waves have small amplitude compared to
their lengths, which allows us to simplify initial system of equations (1.15) to

ϕxx +ϕzz = 0,
ζt =−ϕz at z = ζ (x, t),
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solution to which is written as

ϕ(x,z, t) =−F−1
x

{
e2πuz

2πu
Fu{ζt}

}
.

Propagating wave profile is defined as ζ (x, t) = Acos(2π(kx− t)). Plugging
this formula into (1.17) yields ϕ(x,z, t) = −A

k sin(2π(kx − t))cosh(2πkz). In
order to reduce it to the formula from linear wave theory, rewrite hyper-
bolic sine in exponential form, discard the term containing e−2πkz as contra-
dicting condition ϕ −→

z→−∞
0. Taking real part of the resulting formula yields

ϕ(x,z, t)= A
k e2πkz sin(2π(kx−t)), which corresponds to the known formula from

linear wave theory. Similarly, under small-amplitude waves assumption the
formula for finite depth fluid (1.19) is reduced to

ϕ(x,z, t) =−F−1
x

{
cosh(2πu(z+h))
2πucosh(2πuh)

Fu{ζt}
}
.

Substituting ζ (x, t) with propagating plain wave profile formula yields

ϕ(x,z, t) =
A
k

cosh(2πk(z+h))
cosh(2πkh)

sin(2π(kx− t)), (1.20)

which corresponds to the formula from linear wave theory for finite depth
fluid.

Different forms of Laplace equation solutions, in which decaying exponent
is written with either ”+” or ”-” signs, may cause incompatibilities between
formulae from linear wave theory and formulae derived in this work, where
sinh is used instead of cosh. Equality cosh(2πk(z+h))

cosh(2πkh) ≈ sinh(2πk(z+h))
sinh(2πkh) becomes strict

on the free surface, and difference between left-hand and right-hand sides in-
creases when approaching sea bottom (for sufficiently large depth difference
near free surface is negligible). So, for sufficiently large depth any function
(cosh or sinh) may be used for velocity potential computation near free sur-
face.

Reducing (1.17) and (1.19) to the known formulae from linear wave the-
ory shows, that formula for infinite depth (1.17) is not suitable to compute
velocity potentials with Fourier method, because it does not have symmetry,
which is required for Fourier transform. However, formula for finite depth can
be used instead by setting h to some characteristic water depth. For stand-
ing wave reducing to linear wave theory formulae is made under the same
assumptions.
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1.4.2 Three-dimensional case

Three-dimensional version of (1.14) is written as

ϕxx +ϕyy +ϕzz = 0, (1.21)

ζt +ζxϕx +ζyϕy =
ζx√

1+ζ 2
x +ζ 2

y

ϕx +
ζy√

1+ζ 2
x +ζ 2

y

ϕy −ϕz, at z = ζ (x,y, t).

Again, use Fourier method to solve it. Applying Fourier transform to both
sides of Laplace equation yields

−4π2 (u2 + v2 +w2)Fu,v,w{ϕ(x,y,z)}= 0,

hence w =±i
√

u2 + v2. We seek solution in the form of inverse Fourier trans-
form ϕ(x,y,z) = F−1

x,y,z{E(u,v,w)}. Plugging w = i
√

u2 + v2 = i|k| into the for-
mula yields

ϕ(x,y,z) = F−1
x,y

{(
C1e2π|k|z −C2e−2π|k|z

)
E(u,v)

}
.

Plugging ϕ into the boundary condition on the sea bottom (analogous to
two-dimensional case) yields

ϕ(x,y,z) = F−1
x,y {cosh(2π|k|(z+h))E(u,v)} . (1.22)

Plugging ϕ into the boundary condition on the free surface yields

ζt = i f1(x,y)F−1
x,y {2πucosh(2π|k|(z+h))E(u,v)}

+ i f2(x,y)F−1
x,y {2πvcosh(2π|k|(z+h))E(u,v)}

− F−1
x,y {2π|k|sinh(2π|k|(z+h))E(u,v)}

where f1(x,y) = ζx/
√

1+ζ 2
x +ζ 2

y −ζx and f2(x,y) = ζy/
√

1+ζ 2
x +ζ 2

y −ζy.
Like in sec. 1.4.1 we assume that cosh(2πu(z+h))≈ sinh(2πu(z+h)) near

free surface, but in three-dimensional case this is not enough to solve the
problem. In order to get analytic formula for coefficients E we need to assume,
that all Fourier transforms in the equation have radially symmetric kernels,
i.e. replace u and v with |k|. There are two points supporting this assumption.
First, in numerical implementation integration is done over positive wave
numbers, so the sign of u and v does not affect the solution. Second, the rate
growth of cosh term of the integral kernel is much higher than the one of u
or |k|, so the substitution has small effect on the magnitude of the solution.
Despite these two points, a use of more mathematically rigorous approach
would be preferable.

Making the replacement, applying Fourier transform to both sides of the
equation and plugging the result into (1.22) yields formula for ϕ :
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ϕ(x,y,z, t) = F−1
x,y

{
cosh(2π|k|(z+h))

2π|k|
Fu,v{ζt/(i f1(x,y)+ i f2(x,y)−1)}

Fu,v{D3 (x,y,ζ (x,y))}

}
,

where Fu,v{D3 (x,y,z)}= cosh(2π|k|z).

1.4.3 Evaluation and discussion

Comparing obtained generic formulae (1.17) and (1.19) to the known for-
mulae from linear wave theory allows to see the difference between velocity
fields for both large and small amplitude waves. In general analytic formula
for velocity potential in not known, even for plain waves, so comparison is
done numerically. Taking into account conclusions of 1.4.1, only finite depth
formulae are compared.

The difference with linear wave theory formulae

In order to obtain velocity potential fields, ocean wavy surface was generated
by AR model with varying wave amplitude. In numerical implementation
wave numbers in Fourier transforms were chosen on the interval from 0 to
the maximal wave number determined numerically from the obtained wavy
surface. Experiments were conducted for waves of both small and large am-
plitudes.

The experiment showed that velocity potential fields produced by formula
(1.19) for finite depth fluid and formula (1.20) from linear wave theory are
qualitatively different (fig. ). First, velocity potential contours have sinusoidal
shape, which is different from oval shape described by linear wave theory.
Second, velocity potential decays more rapidly than in linear wave theory as
getting closer to the bottom, and the region where the majority of wave energy
is concentrated is closer to the wave crest. Similar numerical experiment, in
which all terms of (1.19) that are neglected in the framework of linear wave
theory are eliminated, shows no difference (as much as machine precision
allows) in resulting velocity potential fields.

The difference with small-amplitude wave theory

The experiment, in which velocity fields produced numerically by different
formulae were compared, shows that velocity fields produced by formula
(1.19) and (1.3) correspond to each other for small-amplitude waves. Two
ocean wavy surface realisations were made by AR model: one containing
small-amplitude waves, other containing large-amplitude waves. Integration
in formula (1.19) was done over wave numbers range extracted from the gen-
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erated wavy surface. For small-amplitude waves both formulae showed com-
parable results (the difference in the velocity is attributed to the stochastic
nature of AR model), whereas for large-amplitude waves stable velocity field
was produced only by formula (1.19) (fig. ). So, generic formula (1.19) gives
satisfactory results without restriction on wave amplitudes.

1.5 High-performance software implementation for
heterogeneous platforms

1.5.1 White noise generation

In order to eliminate periodicity from generated wavy surface, it is imperative
to use PRNG with sufficiently large period to generate white noise. Parallel
Mersenne Twister [22] with a period of 219937 − 1 is used as a generator in
this work. It allows to produce aperiodic ocean wavy surface realisations in
any practical usage scenarios.

There is no guarantee that multiple Mersenne Twisters executed in par-
allel threads with distinct initial states produce uncorrelated pseudo-random
number sequences, however, algorithm of dynamic creation of Mersenne
Twisters [23] may be used to provide such a guarantee. The essence of the
algorithm is to find matrices of initial generator states, that give maximally
uncorrelated pseudo-random number sequences when Mersenne Twisters are
executed in parallel with these initial states. Since finding such initial states
consumes considerable amount of processor time, vector of initial states is
created preliminary with knowingly larger number of parallel threads and
saved to a file, which is then read before starting white noise generation.

1.5.2 Wavy surface generation

In ARMA model value of wavy surface elevation at a particular point depends
on previous in space and time points, as a result the so called ramp-up interval
(see fig. ), in which realisation does not correspond to specified ACF, forms at
the beginning of the realisation. There are several solutions to this problem
which depend on the simulation context.

If the realisation is used in the context of ship stability simulation with-
out manoeuvring, ramp-up interval will not affect results of the simulation,
because it is located on the border (too far away from the studied marine ob-
ject). If ship stability with manoeuvring is studied, then the interval may be
simply discarded from the realisation (the size of the interval approximately
equals the number of AR coefficients in each dimension). However, this may
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lead to a loss of a very large number of points, because discarding is done
for each dimension. Alternative approach is to generate ocean wavy surface
on ramp-up interval with LH model and generate the rest of the realisation
with ARMA model.

Algorithm of wavy surface generation is data-parallel: the realisation is
divided into equal parts along the time axis each of which is generated in-
dependently, however, in the beginning of each realisation there is ramp-up
interval. To eliminate it for MA process, overlap-add method [24–26] (a pop-
ular method in signal processing) is used. The essence of the method is to add
another interval, size of which is equal to the ramp-up interval size, to the
end of each part. Then wavy surface is generated in each point of each part
(including points from the added interval), the interval at the end of part N is
superimposed on the ramp-up interval at the beginning of the part N+1, and
values in corresponding points are added. To eliminate the ramp-up interval
for AR process, the realisation is divided into part along each dimension, and
each part is computed only when all dependent parts are ready. For that pur-
pose, an array of current part states is maintained in the programme, and all
the parts are put into a queue. A parallel thread acquires a shared lock, finds
the first part in the queue, for which all dependent parts have ”completed”
state, removes this part for the queue, frees the lock and generates the part.
After that a thread updates the state of the part, and repeats the same steps
until the queue becomes empty. This algorithm eliminates all ramp-up inter-
vals except the one at the beginning of the realisation, and the size of the
parts should be sufficiently small to balance the load on all processor cores.

1.5.3 Velocity potential computation

In solutions (1.17) and (1.19) to two-dimensional problem there are func-
tions D1 (x,z) =F−1

x
{

e2πuz
}

and D2 (x,z) =F−1
x {cosh(2πuz)} which has mul-

tiple analytic representations and are difficult to compute. Each function is a
Fourier transform of linear combination of exponents which reduces to poorly
defined Dirac delta function of a complex argument (see table 1.2). The usual
way of handling this type of functions is to write them as multiplication of
Dirac delta functions of real and imaginary part, however, this approach does
not work here, because applying inverse Fourier transform to this representa-
tion does not produce exponent, which severely warp resulting velocity field.
In order to get unique analytic definition, normalisation factor 1/cosh(2πuh)
(which is also included in the formula for E(u)) may be used. Despite the fact
that normalisation allows to obtain adequate velocity potential field, numer-
ical experiments show that there is little difference between this field and the
one produced by formulae, in which terms with ζ are omitted. As a result,
we do not use normalisation factors in the formula.
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Function Without normalisation Normalised

D1 (x,z) δ (x+ iz) 1
2h sech

(
π(x−i(h+z))

2h

)
D2 (x,z) 1

2 [δ (x− iz)+δ (x+ iz)] 1
4h

[
sech

(
π(x−i(h+z))

2h

)
+ sech

(
π(x+i(h+z))

2h

)]
Table 1.2 Formulae for computing D1 (x,z) and D2 (x,z) from 1.4.1, that use normalisation
to eliminate uncertainty from definition of Dirac delta function of complex argument.

1.5.4 Evaluation

ARMA model does not require highly optimised software implementation
to be efficient, its performance is high even without use of co-processors;
there are two main causes of that. First, ARMA model itself does not use
transcendental functions (sines, cosines and exponents) as opposed to LH
model. All calculations, except model coefficients, are done via polynomials,
which can be efficiently computed on modern processors using a series of fused
multiply-add (FMA) instructions. Second, pressure computation is done via
explicit analytic formula using nested FFTs. Since two-dimensional FFT of
the same size is repeatedly applied to every time slice, its coefficients (complex
exponents) are pre-computed for all slices, and computations are performed
with only a few transcendental functions. In case of MA model, performance
is also increased by doing convolution with FFT. So, high performance of
ARMA model is due to scarce use of transcendental functions and heavy
use of FFT, not to mention that high convergence rate and non-existence of
periodicity allows to use far fewer coefficients compared to LH model.

ARMA implementation uses several libraries of reusable mathematical
functions and numerical algorithms (listed in table 1.3), and was implemented
using OpenMP and OpenCL parallel programming technologies, that allow
to use the most efficient implementation for a particular algorithm.

Library What it is used for
DCMT [23] parallel PRNG
Blitz [27,28] multidimensional arrays
GSL [29] PDF, CDF, FFT computation

checking process stationarity
LAPACK, GotoBLAS [30,31] finding AR coefficients
GL, GLUT [32] three-dimensional visualisation
CGAL [33] wave numbers triangulation

Table 1.3 A list of mathematical libraries used in ARMA model implementation.

For the purpose of evaluation we use simplified version of (1.4.2):
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ϕ(x,y,z, t) = F−1
x,y

{
cosh(2π|k|(z+h))
2π|k|cosh(2π|k|h)

Fu,v{ζt}
}

= F−1
x,y {g1(u,v)Fu,v{g2(x,y)}} . (1.23)

This formula is particularly suitable for computation on GPUs:

• it contains transcendental mathematical functions (hyperbolic cosines and
complex exponents);

• it is computed over large four-dimensional (t, x, y, z) region;
• it is analytic with no information dependencies between individual data

points in t and z dimensions.

Since standing sea wave generator does not allow efficient GPU implemen-
tation due to autoregressive dependencies between wavy surface points, only
velocity potential solver was rewritten in OpenCL and its performance was
compared to existing OpenMP implementation.

For each implementation the overall performance of the solver for a par-
ticular time instant was measured. Velocity field was computed for one t
point, for 128 z points below wavy surface and for each x and y point of
four-dimensional (t,x,y,z) grid. The only parameter that was varied between
subsequent programme runs is the size of the grid along x dimension. A total
of 10 runs were performed and an average time of each stage was computed.

A different FFT library was used for each version of the solver. For
OpenMP version FFT routines from GNU Scientific Library (GSL) [29] were
used, and for OpenCL version clFFT library [34] was used instead. There are
two major differences in the routines from these libraries.

• The order of frequencies in Fourier transforms is different and clFFT li-
brary requires reordering the result of (1.23) whereas GSL does not.

• Discontinuity at (x,y) = (0,0) of velocity potential field grid is handled au-
tomatically by clFFT library, whereas GSL library produce skewed values
at this point.

For GSL library an additional interpolation from neighbouring points was
used to smooth velocity potential field at these points. We have not spotted
other differences in FFT implementations that have impact on the overall
performance.

In the course of the numerical experiments we have measured how much
time each solver’s implementation spends in each computation stage to ex-
plain how efficient data copying between host and device is in OpenCL im-
plementation, and how one implementation corresponds to the other in terms
of performance.
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1.5.5 Results

The experiments showed that GPU implementation outperforms CPU im-
plementation by a factor of 10–15 (fig. 1.1), however, distribution of time be-
tween computation stages is different for each implementation (fig. 1.2). The
major time consumer in CPU implementation is computation of g1, whereas
in GPU implementation its running time is comparable to computation of g2.
GPU computes g1 much faster than CPU due to a large amount of modules
for transcendental mathematical function computation. In both implemen-
tations g2 is computed on CPU, but for GPU implementation the result is
duplicated for each z grid point in order to perform multiplication of all XY Z
planes along z dimension in single OpenCL kernel, and, subsequently copied
to GPU memory which severely hinders overall stage performance. Copying
the resulting velocity potential field between CPU and GPU consumes ≈ 20%
of velocity potential solver execution time.
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Figure 1.1 Performance comparison of CPU (OpenMP) and GPU (OpenCL) versions
of velocity potential solver.

1.6 Conclusion

Three-dimensional ARMA ocean simulation model coupled with analytic for-
mula for determining pressures under wavy sea surface is computationally
efficient of performing long-term ship behaviour simulations on the com-
puter. Possible applications of the approach include studying ship behaviour
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Figure 1.2 Performance breakdown for GPU (OpenCL) and CPU (OpenMP) versions
of velocity potential solver.

in storm and shallow water waves. Its validity was visually and statistically
verified in a number of experiments: distribution of characteristics of waves,
produced by ARMA model, match the ones of real ocean waves, and veloc-
ity potential field, produced by the analytic formula correspond to the one
produced by the formula for small-amplitude waves, and the formula itself
reduces to the known one from linear wave theory.

Numerical experiments showed that wavy surface generation is efficient on
CPU as it involves no transcendental mathematical functions, and velocity
potential field computation is efficient on GPU due to heavy use of Fourier
transforms. The use of dynamically generated Mersenne Twister PRNGs al-
lows to produce uncorrelated sequences of pseudo-random numbers with no
practical limitation on the realisation period, which in turn allows to perform
long simulation sessions on parallel machines.

The future work is to make ARMA mathematical apparatus and its nu-
merical implementation a base of virtual testbed for marine objects dynamics
studies.
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