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ABSTRACT

In the paper a new way of simulating hydrodynamic pressure near ship’s hull is proposed. This
approach is based on autoregressive model (ARM) which is used for wave surface generation.
ARM is good for long-term direct simulations. This model retains all hydrodynamic characteristics
of sea waves. These features allow you to accurately solve the potential problem and to calculate
the hydrodynamic pressure at the surface. The paper shows the solution of two-dimensional
problem. In the paper calculation scheme and complete problem solution as well as test results are
provided.
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1. INTRODUCTION

Direct stability assessment of ship stability in
irregular waves may require numerical
simulation using advanced hydrodynamic
codes, (e.g. see Beck & Reed 2001). The length
of record needs to be long enough that
nonlinear behavior of dynamical system can be
revealed. If the volume of sample is
insufficient, event qualitative conclusions may
not be possible, see for example (Degtyarev &
Reed 2011). This reference describes
benchmarking of parametric roll (numerical
simulations against model test) and shows that
one 20 min record does not contain sufficient
information to pass a judgment.

The reason for these difficulties is a nonlinear
character of ship roll in waves; as it was shown
by (Belenky, et al 1998), nonlinearity may lead
to practical non-ergodicity if the length of the
record is not long enough. Using a set of
independent records resolves the problem;

however, the length of each record still needs
to be sufficient. This length may be not small,
especially for large speeds in following waves
where the number of waves encounters is
small. Numerical simulation of long records
bears large computational cost, because
Longuet-Higgins model requires an increase of
frequency component with length (Belenky,
2011)

Autoregresson model of wave elevations
(Degtyarev, 2011) holds a promise to decrease
computational costs of long records. This
model offers certain advantages over existing
wave wind models. First of all, it enables
efficient computation of sea wave elevation
compared to linear Longuet-Higgins model.
Secondly, it can be used to produce wave fields
with arbitrary chosen distribution function via
nonlinear inertialess transformation of
generated surface. It is important property
because investigations show that real waves are
characterized by a non-Gaussian distribution
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law of wave elevation. Degtyarev & Reed
(2011) have shown that dispersion relation is
kept in the autoregressive model.

However, autoregressive model is not limited
only to generating wave fields and, when
extended, this model can also produce
pressures and/or velocity potentials within the
fluid domain, so that it can be easily used to
predict the Froude-Krylov forces on a ship’s
hull in a seaway. Such autoregressive approach
can substantially reduce complexity of
computations required for producing pressures.
Knowing pressures is important when solving
problem of vessel dynamics in rough sea. So,
the described approach can be employed to
solve a variety of simulation problems inside a
virtual testbed, such as simulation of marine
object behavior in irregular waves. Problems of
that kind frequently involve large-scale or
long-term simulation, that is why it is
important to use autoregressive model to
reduce computation time.

Application of ARM to a moving wavy surface
in three dimensions (2-D space + 1-D
temporal) can be defined as

       tyxktjyix

N

i

N

j

N

k
kjityx

x y t

,,,,
0 0 0

,,,,   
  
 (1)

where (i, j, k) is the generalized coefficients of
ARM, and (x, y, t) a field of white noise.

Autoregressive coefficients can be estimated
from the autocovariate function (ACF) using
Yule-Walker equations. Theoretically the
number of autoregressive coefficients tends to
infinity. In practice we have such an ACF that
high order of autoregressive coefficients tend
to zero, and we can neglect them. So really the
order in one direction is from 3 to 10.

In simplest case of one dimensional stochastic
process we have the following ARM

with the system of linear equations for ARM
coefficients determination (Yule-Walker
equations for one dimensional case)

K (n)  i
i1

N

 K (k  n)

where k,n=1,…,N; K(i) – value of ACF at the
moment  = i t (t is the value of time
discretization).

The advantages and features of ARM are
described in detail in several previous articles:
Degtyarev & Reed (2011), Degtyarev (2011),
Boukhanovsky & Degtyarev (1996), etc.
Computational efficiency in long-term wind
waves simulations is shown in Degtyarev &
Gankevich (2011). Initial statement of the
problem is described in Degtyarev &
Boukhanovsky (1997), Degtyarev &
Podolyakin (1998), Degtyarev & Mareev
(2010).

2. STATEMENT OF PROBLEM OF
HYDRODYNAMIC PRESSURE
DETERMINATION UNDER THE
WAVE SURFACE

To determine the evolution of the
hydrodynamic pressure at the rough wave
surface we consider the classical problem of
the wave theory. For simplicity we consider
two-dimensional problem.

Fig.1. The coordinate system.

Traditional formulation is reduced to finding
the wave potential (Kochin, et al., 1964).
Solution to this problem provides a complete;
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definition of the hydrodynamic pressure at the
wave surface.

)(

2
1

0

0

22

xzat
zxxt

pg
zxt























































(3)

The Laplace equation for the potential (x,z,t)
in the coordinate system shown in Fig.1 is
supplemented by two boundary conditions on
the wave surface. These are conditions that the
pressure at the surface equals to atmospheric
pressure p0 (dynamic boundary condition) and
the continuity of fluid motion (kinematic
condition). The last condition says that a fluid
particle belonging to the surface can not go into
the liquid and remains on the surface.

The complexity of Problem (3) consists first of
all in that the boundary conditions are
nonlinear, and secondly, they satisfy in every
moment at the unknown free surface. Problem
(3) can be reduced to Laplace's equation with
one combined boundary condition by
eliminating the unknown elevation of free
surface (Kochin, 1964; Newman, 1977). It is
known that this formulation assumes the
transfer of boundary conditions on the well-
known in advance and the unperturbed surface
z=0.

Our assumption in the modification of the
problem statement (1) is related with the fact
that we know the free surface (x,t) at any
time. The assumption of knowledge of the
wave surface at any time makes it possible to
give up one of the boundary condition. This is
exactly that condition which defines variation
of free surface. Of course, in general this
approach is incorrect because prescribed free
surface has to correspond to the described
physical phenomenon. In other words, we need
to "guess" the correct decision.

The validity of the decision to use the free
surface (x,t) obtained using the AR model is
the fact that the adequacy of this model to the
hydrodynamic reality was earlier proved
(Boukhanovsky & Degtyarev, 1996; Degtyarev
& Reed, 2011, etc.). In other words, the wave
surface resulting AR model correctly "guesses"
the evolution of real sea waves under some
initial conditions. As for the ship motion
calculations we are interesting in any
realization of a stationary sea wave, the choice
of initial conditions can be made arbitrarily. As
a result of the solution of (3), we obtain a
realization of a stationary field of the
hydrodynamic potential evolution.

Since at any given time the surface on which
the boundary conditions is known, one of them
may be excluded from consideration. It is
logical to exclude the first (dynamic) condition,
since only it has a derivative of the
hydrodynamic potential over time. Laplace
equation itself and the second boundary
condition do not contain derivatives of the
unknown function of time. It should be noted
that it is the first boundary condition is used in
the process of linearization to find the free
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in this formulation is already known, you can
use the first boundary condition for finding the
derivative of the potential over time.
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In addition, you must understand that in order
to determine the hydrodynamic pressure is
necessary the determination of derivatives of
the potential in time and space coordinates.
Potential itself for further calculations is not
involved.

Thus, Problem (3) reduces to successive
solution of Laplace's equations with the second
boundary condition at any particular time.
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functions (wave slope and velocity of points at
the surface), which we can easy determine with
the help of AR model. Boundary conditions are
defined at the surface that is known in any time
moment.

Notable in the formulation of Problem (5) is its
linearity and definiteness of the border. Thus, a
complex nonlinear problem with an unknown
boundary is replaced by a sequence of simple
linear problems with known boundary.

3. SOLUTION OF 2D PROBLEM

Let us represent the components of the velocity
of the fluid particles as the follow
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In this case condition of the Cauchy-Riemann
(7) for the velocity components u and w is also
true:
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From the Laplace equation (6) and the Cauchy-
Riemann condition (7) we can get two of the
Laplace equations for the velocity components:

0;0  wu . As a result of transformations
(see Appendix 1) we obtain for the velocity
components u the following linear problem.
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Equation (8) is a mixed boundary value
problem for the Laplace equation or the other
problem of Robin (Zachmanoglou & Thoe,
1976).

3.1 Exact solution of the Robin’s
problem at the wave surface

Solutions of the Laplace equation with respect
to the vertical velocity component at the
surface is not required, because, if we find u on
the surface, then according to the initial
boundary condition (6) and (4) we find
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Knowing these three components on the
surface, you can find the hydrodynamic
pressure at any point below the surface
(Degtyarev & Boukhanovsky, 1997; Degtyarev
& Podolyakin, 1998). Thus Problem reduces to
solving only the equation (8).

The Robin’s problem (reduction of the general
problem to it) is good because it is a standard
model problem. The problem itself is linear,
the boundary condition is also linear. This
simplifies the solution by standard methods.
Let us apply Fourier method for solution of
equation (8) (see Appendix 2). As a result, we
obtain the following integral formula (Kochin,
1964).
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Finding the coefficients of the E1,2 is
determined by the mixed boundary condition
(8).
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In the practical solution of the problem integral
in (10) is replaced by a sum of  as well as in
finding the coefficients E1,2

  


  xExEezxu z cos)(sin)(),( 21 (11)

This makes it possible to determine all the
derivatives of the potential on the surface at
any one time. To do this, let us use the
following expressions xu   – (11),

zw   , t – (9).

3.2 Approximate solution of the Robin’s
problem at the wave surface

However, Problem (8) can be solved by an
approximate method. For this we use the
assumption of slow decay of the coherence
function of wind waves. It is analogous to the
assumption of weak changes in the local wave
number in time and space in comparison with
the process. The possibility of such a
assumption is quite justifiable. Figure 2
illustrates the difference of time scales of these
two processes.

As mentioned, Degtyarev & Reed (2011)
showed that the AR model keeps the dispersion
relation. In this case it corresponds to the real
waves, and not the dispersion relation
corresponding to waves of very small
amplitude. It should be noted that this theory is
the basis for the majority of expressions for the
hydrodynamic exiting forces and moments. In
Boukhanovsky & Degtyarev (1995) it is shown
how to obtain a smooth realization of the local
wave number in dynamic, as well as to avoid
some rare computer problems.

Under this assumption, we can approximately
put

),(),(),( txtxk
z

tx 





(12)

Fig.2. Fragment of synchronous realizations of
wind waves and instantaneous frequency
generated by AR model.

This approach from a mathematical point of
view is totally incorrect, but to study a class of
considered processes (sea waves) may be quite
adequate. It allows you to simplify (5),
reducing it to solution of isolated ordinary
differential equation of second order with
variable coefficients. The solution is given in
Appendix 3.

3.3 Pressure determining under the
water surface

Determination of derivatives of the potential on
the surface of wavy fluid, as already
mentioned, makes it possible to determine the
hydrodynamic pressure at any point below the
surface. For this we consider the concept of the
complex potential:
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where  is stream function.

In accordance with Cauchy-Riemann condition
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Let us  = x0 + i z0. Then in accordance with
integral Cauchy formula
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Here C is boundary of region D, carried out in
such a way that D is always on the left (bypass
is counter-clockwise – see Fig. 3).
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Fig. 3. The domain of integration.

Let us divide contour C on two parts: (1) BA –
free surface; (2) AB – semicircle lying in the
lower half-plane (with radius R)
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Based on Jordan's lemma the second integral
tends to 0 as R.

Thus, to find the potential at any point below
the surface it is sufficient to integrate only on
the free surface. Meanwhile the points A and B
must be sufficiently distant from the point of 
(in this case we can substitute infinity limits on
finite limits).

Since we are mostly interested in the value of
not the potential and its derivatives, we
differentiate expression (15)

z
i

x

z
i

zx
i

x
W




























 )(
(17)

From the other side in accordance with integral
Cauchy formula (and Jordan's lemma)
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Because we bypass the counter-clockwise, we
obtain
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In calculating the integral we can operate in
accordance with the definition of the integral
along the contour C:
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where 0=a, 1, 2, …, n-1=b – consecutive
points, dividing the contour C into n sections,
through a and b the ends of the C are denoted.
k is arbitrary point lying on the interval [k,
k+1] of curve C. The limit is taken under the
assumption that max(k+1-k)0. Since the
wave profile is piecewise smooth curve for
non-braking waves, and the integrand is
piecewise, continuous and bounded function
when  is not on the surface, the integral exists.
Let us =x+iz. Then we can represent contour
of integration C and point  (fig.3) by the
following view

00 izx
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where index  means that coordinates of points
are taken on the free surface (x) in the
coordinate system 0xz (fig.3).
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Using (21) in the formal definition of the
integral along the contour (20), we find the
values of the velocity components u and v at
the point  in terms of quadratures
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Similar to the previous reasoning derivative of
the complex potential over time is calculated.
The peculiarity of these calculations is the need
for knowledge of the stream function and the
derivative (13) on the free wave surface. It is
separate problem, but it could be solved
correctly also.

In the issue for the time derivative of the
potential at the point  we get a similar (22)
expression in quadratures.

Now we can obtain hydrodynamic pressure in
any point  under the free surface
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4. COMPUTATIONAL ASPECTS

The computational efficiency of the proposed
approach is based on fast algorithms of AR
model. These algorithms are simple, require the
use of a small number of elementary operations
(addition and multiplication). These algorithms

are very favorable with those of the Fourier
series like models of St.Denis & Pearson,
Rosenblatt, Sveshnikov, or Longuet-Higgins.
However, Degtyarev & Gankevich (2011) have
shown that these algorithms can be efficiently
parallelized for long implementations. The
multithread character of the considered
algorithms makes it possible to increase the
speed of computing through the use of graphics
accelerators.

Thus, the first step in calculating the excitation
forces acting on the vessel is to generate wind
wave fields and kinematic characteristics of the
wave surface. The size of the area that is being
generated depends on the size of the vessel, the
nature of waves and should be so large that it
would have been achieved the convergence of
the integrals (18) (19).

The second step is to calculate the derivatives
of the potential on the surface of the water.
This step has a maximum degree of
parallelism, because we have independent
problems (8) at each time moment. Any of
described methods for solution of problem (8)
(Sections 3.1, 3.2) or the direct method of
solving the elliptic problem (8), such as
multigrid method (Mijalkovic & Joppich,
1993), can be expressed by an efficient
parallelizable algorithm.

The third step is to find the pressure at a given
set of points under the free surface (the points
of the hull). The pressure at each point is
calculated independently of each other.

5. CONCLUSIONS

It can be concluded that the autoregression
model gives an accurate, hydrodynamically
valid description of wind waves
(Boukhanovsky & Degtyarev, 1996; Degtyarev
& Reed, 2011). This means that we can use the
model to solve the problem of predicting the
velocity potential in the fluid below the wave
surface. In this case we can reduce this
complicated nonlinear hydrodynamic problem
with an unknown boundary to linear problem
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with a known boundary and linear boundary
conditions. It is proposed several approaches
for problem solving.

From a computational point of view, the
algorithm of problem solving consists in three
major steps, each of which has a high degree of
parallelism, a well-balanced and scalable.
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8. APPENDIX 1. DERIVATION OF
EQUATION FOR THE VELOCITY
COMPONENT U

Indeed from equation (4) and the Cauchy-
Riemann condition (5) Laplace equations for
two velocity components can be obtained. Let
us derivate Laplace equation (4) on x:
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(A1.1)

In the third terms, replacing w by u carried out
in compliance with the condition of the
Cauchy-Riemann condition.

Similarly, the second Laplace equation for the
vertical velocity component can be obtained.

Now let us differentiate the boundary condition
on the coordinate x. To do this we have the
right, because differentiation is carried out
along the border, and not by the normal.

x
g

x
uu

xx
w
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
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
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(A1.2)

The first term can also be replaced, based on
the Cauchy-Riemann condition. As a result, we
obtain the following boundary condition

txux
u

z
u  






 , (A1.3)

where the last term is the time differentiation of
the wave slope angle. We can easily calculate
this derivative using AR model:

ttxttxx
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9. APPENDIX 2. SOLUTION OF MIXED
BOUNDARY VALUE PROBLEM FOR
VELOCITY COMPONENT U

Since Problem (6) is linear, we apply the
standard Fourier method of separation of
variables to solve it.
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(A2.1)

Let us also take into account boundary
condition at infinity: 0 at z for
deep water. This condition is equivalent to
condition of absence of disturbance at great
depth: 0lim 


u

z
. Solution (А2.1) has the

following view
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D1=0 in accordance with boundary condition at
infinity. Then
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Due to the linearity of (6), its solution will also
be solutions of any sum (A2.3). Thus, the
general solution of (6) is
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Where сс is complex conjunction term. To find
the complex amplitudes E should be replaced
with a solution of (A2.4) into the boundary
condition (6).
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Let us simplify this expression taking the

integral 

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property that 0)( )(x)( 
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 ixeE . In this

case we can simplify (А2.5) by the following
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10. APPENDIX 3. SOLUTION OF
APPROXIMATE PROBLEM FOR
VELOCITY COMPONENT U

Let us solve the Laplace equation with the
second boundary condition at a known position
of the free surface (3), using the assumptions of
validity of the relation (10). To do this we
formally differentiate the boundary condition
in z.
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Here  is a process of wave ordinate variation,
 is a process of wave slope variation, the dot
at above is differentiation with respect to time,
lower indexes x or z are differentiation with
respect to corresponding coordinate. 

Substituting this result into the Laplace
equation results in the ordinary differential
equation of first order with variable
coefficients with respect to the velocity
component xu   .
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Here the derivative is considered as a
derivation of the variable x.

Taking into account the relation (10) we can
represent derivations with respect to z as
follows

 

  



kkk
xzx

kkk
t

xz

z

















2



(A3.3)

Synchronous processes xx kkk ,,,,,,,  
can be easily reproduced using the AR model.

In result we have the following equation

0)()(  xguxfu (A3.4)

where
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General solution of equation (А3.4) is
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Here (,) are initial conditions of differential
equation (А3.4);
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We are free to choose the origin. Let us choose
a point with zero initial conditions (0, 0). In
this case we have
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Denote the second integral in (A3.8) through
I(x). Then the final solution can be found in the
following way
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