
Balancing load on a multiprocessor system with
event-driven approach

Alexander Degtyarev and Ivan Gankevich

Saint Petersburg State University, Saint Petersburg 199034, Russia
deg@csa.ru, i.gankevich@spbu.ru

Abstract. There are many causes of imbalanced load on a multiproces-
sor system such as heterogeneity of processors, parallel execution of tasks
of varying complexity and also difficulties in estimating complexity of a
particular task, however, if one can treat computer as an event-driven
processing system and treat tasks as events running through this system
the problem of load balance can be reduced to a well-posed mathemat-
ical problem which further simplifies to solving a single equation. The
load balancer measures both complexity of the task being solved and
performance of a computer running this particular task so that a load
distribution can be adjusted accordingly. Such load balancer is imple-
mented as a computer program and is known to be able to balance the
load on heterogeneous processors in a number of scenarios.

Keywords: load balance, event-driven architecture, heterogeneous sys-
tem, multiprocessor computer

Introduction

Load balance is maintained by adjusting distribution of computational tasks
among available processors with respect to their performance, and inability to
distribute them evenly stems not only from technical reasons but also from pe-
culiarity of a problem being solved. On one hand, load imbalance can be caused
by heterogeneity of the tasks and inability to estimate how much time it takes to
execute one particular task compared to some other task. Such difficulties arise
in fluid mechanics applications involving solution of a problem with boundary
conditions when the formula used to calculate boundary layer differs from the
formula used to calculate inner points and takes longer time to calculate; the
same problem arises in concurrent algorithms of intelligent systems that have
different asymptotic complexities but solve the same problem concurrently hop-
ing to obtain result by the fastest algorithm. On the other hand, load imbalance
can be caused by heterogeneity of the processors and their different performance
when solving the same problem and it is relevant when tasks are executed on
multiple computers in a network or on a single computer equipped with an accel-
erator. Therefore, load imbalance can be caused by heterogeneity of tasks and
heterogeneity of processors and these peculiarities should be both taken into
account to maintain load balance of a computer system.



From mathematical point of view, load balance condition means equality of
distribution function F of some task metric (e.g. execution time) to distribution
function G of some processor metric (e.g. performance) and the problem of
balancing the load is reduced to solving equation

F (x) = G(n), (1)

where x is task metric (or time taken to execute the task) and n is processor
metric (or relative performance of a processor needed to execute this task). Since
in general case it is impossible to know in advance neither the time needed to
execute the task on a particular processor, nor the performance of a processor
executing a particular task, stochastic approach should be employed to estimate
those values. Empirical distribution functions can be obtained from execution
time samples recorded for each task: task metric is obtained dividing execution
time by a number of tasks and processor metric is obtained dividing a number
of tasks by their execution time. Also, any other suitable metrics can be used
instead of the proposed ones, e.g. the size of data to be processed can be used
as a task metric and processor metric can be represented by some fixed number.

It is easy to measure execution time of each task when the whole system
acts as an event-driven system and an event is a single task consisting of pro-
gram code to be executed and data to be processed. In this interpretation, load
balancer component is connected to a processor recursively via profiler form-
ing feedback control system. Profiler collects execution time samples and load
balancer estimates empirical distribution functions and distributes new tasks
among processors solving equation 1.

Static load balancing is also possible in this event-driven system and for that
purpose a set of different load balancers can be composed into a hierarchy. In
such hierarchy, distribution function is estimated incrementally from bottom to
top and hierarchy is used to maintain static load balance. Physical processors
are composed or decomposed into virtual ones grouping a set of processors and
assigning them to a single load balancer or assigning one physical processor to
more than one load balancer at once. So static load balancing is orthogonal to
dynamic load balancing and they can be used in conjunction.

To summarize, recursive load balancing approach targets problems exhibiting
not only dynamic but also static imbalance and the balance can be achieved
solving a single equation.

Related work

The main drawback of existing parallel programming technologies is their inabil-
ity to perform load balancing across different computing devices. Each device is
associated with a different type of a workload, e.g. disk is associated with I/O
and processor with pure computations. Although, almost any program involves
computations and reading/writing data to disk, today’s standards for multi-core
programming (like OpenMP [2]) do not allow to do it in parallel — there are no
pipelines neither in OpenMP standard nor in any emerging technology known



to date. Moreover, there are many other computing devices that can benefit
from pipelines — mainly network interface cards and GPUs — to perform com-
putations and data transfer simultaneously. So, modern parallel programming
technologies do not allow to co-exist different type of workloads in a single pro-
gram, but many programs may benefit from it, exploiting additional degrees of
parallelism.

In contrast to parallel programming technologies, event-driven approach al-
lows to use every device in the computer in a unified way, and easily form a
pipeline between different devices. Event-driven architecture have been used ex-
tensively to create desktop applications with graphical user interface since MVC
paradigm [11] was developed and nowadays it is also used to compose enter-
prise application components into a unified system with message queues [9, 13],
however, it is rarely implemented in scientific applications. One example of such
usage is GotoBLAS2 library [7, 8]. Although, it is not clear from the referenced
papers, analysis of its source code1 shows that this library uses specialized server
object to schedule matrix and vector operations’ kernels and to compute them in
parallel. The total number of CPUs is defined at compile time and they are as-
sumed to be homogeneous. There is a notion of a queue implemented as a linked
list of objects where each object specifies a routine to be executed and data to
be processed and also a number of CPUs to execute it on. Server processes these
objects in parallel and each kernel can be executed in synchronous (blocking)
and asynchronous (non-blocking) mode. So, compared to event-driven system
GotoBLAS2 server uses static task scheduling, its tasks are not differentiated
into production and reduction tasks, both the tasks and the underlying sys-
tem are assumed to be homogeneous. GotoBLAS2 library exhibits competitive
performance compared to other BLAS implementations [7, 8] and it is a good
example of viability of event-driven approach in scientific applications. Consid-
ering this, event-driven system can be seen as a generalization of this approach
to a broader set of applications.

There are a number of research works in which the authors develop systems
borrowing some features from event-driven approach. For example, in [10,12,14] a
concurrent object-oriented system similar to our system is described. In contrast
to our system, it uses messages rather than events to transfer data, and it does
not allow load-balancing across different computing devices. Another example
is [1], in which the author describes a system which uses supervisor trees to
organize concurrent processes and manage resources. These structures are similar
to hierarchies, but we have different hierarchies for servers and tasks, so that
system resources and the flow of computations can be managed separately. So,
there are some works which borrow different parts of a typical event-driven
system, however, they either do not put emphasis on load-balancing, or do not
describe their system as an event-driven, thus not exploiting full benefits of it.

Load-balancing is one of the main tasks of an operating system, and in our
view in high-performance computing it should be delegated to some intermediate
software layer which lies between operating system and application. So, in con-

1 Source code is available in https://www.tacc.utexas.edu/tacc-projects/gotoblas2/.



trast to described approaches it would be useful to implement full event-driven
system and hide message passing and synchronization logic in it.

1 Implementation of event-driven system

The whole system was implemented as a collection of C++ classes, and problem-
solving classes were separated from utility classes with an event-driven approach.
In this approach, problem solution is represented by a set of executable objects or
“employees”, each implementing a solution of one particular part of a problem.
Each executable object can implement two methods. With the first method
employee either solves part of the problem or produces child executable objects
(or “hires” additional employees) to delegate problem solution to them. Since
upon completion of this method no object is destroyed, it is called “production”
task or “upstream” task as it often delegates problem solution to a hierarchy
layer located farther from the root than the current layer is. The second method
collects execution results from subordinate executable objects and takes such
object as an argument. Upon completion of this method the child object is
destroyed or “fired” so that the total number of executable objects is reduced.
Hence this task is called “reduction” task or “downstream” task since the results
are sent to a hierarchy layer located closer to root. Executable objects can send
results not only to their parents but also to any number of other executable
objects, however, when communication with a parent occurs the child object is
destroyed and when the root object tries to send results to its nonexistent parent,
the program ends. Execution of a particular object is performed via submitting
it to a queue corresponding to a particular processor. Child and parent objects
are determined implicitly during submission so that no manual specification is
needed. Finally, these objects are never copied and are accessed only via their
addresses. In other words, the only thing that is required when constructing an
executable object is to implement a specific method to solve a task and object’s
life time is implicitly controlled by the system and a programmer does not have
to manage it manually.

Execution of objects is carried out concurrently and construction of an exe-
cutable object is separated from its execution with a thread-safe queue. Every
message in a queue is an executable object and carries the data and the code
needed to process it and since executable objects are completely independent of
each other they can be executed in any order. There are real server objects cor-
responding to each queue in a system which continuously retrieve objects from
a queue and execute their production or reduction tasks in a thread associated
with the server object. Production tasks can be submitted to any queue, but
a queue into which reduction tasks can be submitted is determined by a corre-
sponding parent object so that no race condition can occur. Since each processor
works with its own queue only and in its own thread, processing of queues is car-
ried out concurrently. Also, each queue in a system represents a pipeline through
which the data flows, however, execution order is completely determined by the



objects themselves. So, executable objects and their methods model control flow
while queues model data flow and the flows are separated from each other.

Heterogeneity of executable objects can cause load imbalance among different
queues and this problem can be solved introducing imaginary (i.e. proxy) servers
and profilers to aid in distribution of executable objects. Imaginary server is a
server tied to a set of other servers and its only purpose is to choose the right
child server to execute an object at.

In the simplest case, a proper distribution can be achieved with round-robin
algorithm, i.e. when each arriving object is executed on the next server, however,
in general case, some additional information about completed runs is needed to
choose the right server and this information can be collected with pluggable pro-
filer objects. When a new object arrives to an imaginary server, actual profiling
information is collected from child servers and specified distribution strategy
is used to delegate execution of an object to an appropriate server, and some
static distribution strategy is also possible. So, imaginary servers together with
distribution strategies and profilers can be used to distribute executable objects
among real servers taking into account some profiling information of completed
object executions.

The class diagram of the whole event-driven system is depicted in the Figure 1
and the system works as follows.

1. When a program execution starts, the hierarchy of imaginary and real servers
is composed. All real servers are launched in a separate threads and process-
ing of executable objects starts.

2. The first object is created and submitted to the imaginary server at the top
of the hierarchy. The server employs specified distribution strategy to choose
an appropriate server from the next layer of the hierarchy to send the object
to. The profiler gathers measurements of completed runs from subordinate
servers and decides where to send an object.

3. The previous step repeats until the bottom level of the hierarchy is reached
and real server which was found with the distribution strategy starts execu-
tion of an object.

4. Object is executed and measurements are made by a profiler. If during execu-
tion more executable objects are created and submitted to the top imaginary
server, the whole algorithm is repeated for each new object; if the root object
submits reduction task then all servers in the hierarchy are shut down, and
program execution ends.

To sum up, the whole system is composed of the two hierarchies: one hierarchy
represents tasks and data and their dependencies employing executable objects,
the other hierarchy represents processing system employing imaginary and real
server objects. Mapping of the first hierarchy to the second is implicit and is
implemented using message queues. Such composition allows easy configuration
of dynamic and static load distribution strategies and allows programming with
simple executable objects.



Iserver Rserver

Ipro�ler Rpro�lerDistribution

strategy

Queue

Task

Server

Fig. 1: Class diagram for an event-driven system. “Iserver” denotes imaginary
server and “Rserver” denotes real server.

2 Implementation of distribution strategy

Recursive load balancing was implemented as a load distribution strategy, how-
ever, equation 1 was not solved directly. The first problem occurring when solving
this equation directly was that task metric x cannot be computed before actu-
ally running the task so it was estimated to be an average metric of a number of
previous runs. The second problem was that when the task metric is known, the
result of direct solution of equation 1 is not an identifier of a processor to execute
the task on but it is number n – relative performance of a processor needed to
execute the task and the number n is not particularly useful when determining
where to execute the task. Therefore, equation 1 was not solved directly but its
main idea was realized in an algorithm similar to round-robin.

The resulting algorithm works as follows.

1. First, algorithm collects samples recorded by profilers of child servers as well
as estimates task metric and processor metric using values from previous
runs. At this stage, not only averaging but also any other suitable predicting
technique can be used.

2. Then, probability of having a task with metric equal to computed task met-
ric is determined by counting samples equal to computed task metric and
dividing it by the total number of samples.

3. The cursor pointing at the processor to execute the next task on is incre-
mented by a step equal to a product of computed probability and computed
processor metric.

4. Then, by recursively subtracting metric of each processor from the cursor,
the needed processor is found and the task is executed on it.

The resulting mathematical formula for each step can be written simply as

cursor = cursor + F (x̄)n̄,

where x̄ is a task metric and n̄ is a processor metric. In case of fully homogeneous
system and all tasks having equal metric this algorithm is equivalent to round-
robin: all processors have metric equal to 1 and probability is always 1 so that
the cursor is always incremented by 1.



Although, the algorithm is simple, in practice it requires certain modifica-
tions and a robust profiler to work properly. Since algorithm balances reciprocal
values of task metric t (execution time) and processor metric 1/t (processor
throughput), even a slight oscillation of a task metric can affect the resulting
distributions greatly. The solution to this problem is to smooth samples with
a logarithm function and it can be done in a straightforward way, because the
algorithm does not make assumptions about metrics’ dimensions and treat them
as numbers. The second problem is that the algorithm should be implemented
with integer arithmetic only to minimize overhead of load balancing. This prob-
lem can be solved by omitting mantissa after logarithm is applied to a sample
and in that case processor metric is equal to task metric but has an opposite
sign. The last major problem is that the distribution of task metric may change
abruptly during program execution, which renders samples collected by a profiler
for previous runs useless. This problem is solved by detecting a sharp change in
task execution time (more than three standard deviations) and when outliers are
detected the profiler is reset to its initial state in which distribution is assumed
to be uniform. As a result of applying logarithm to each sample the algorithm
becomes unsuitable for relatively small tasks and for tasks taking too much time,
and although such tasks are executed, the samples are not collected for them
as they often represent just control flow tasks. To summarize, the modified al-
gorithm is implemented using integer arithmetic only, is suitable for relatively
complex tasks and adapts to a rapid change of a task metric distribution.

One problem of the algorithm that stands aside is that it becomes inefficient
in the event of high number of tasks with high metric values. It happens because
when task is assigned to a particular processor it is not executed directly but
rather gets placed in a queue. If this queue is not empty the task can reside
in it for such a long time that its assignment to a particular processor will not
match actual distribution function. The solution is simple: these stale tasks can
be easily detected by recording their arrival time and comparing it with the
current time and when such tasks are encountered by a queue processor, they
can be redistributed to match the current distribution function. However, an
existence of stale tasks is also an evidence that the computer is not capable of
solving a problem fast enough to cope with continuously generated tasks and
it is an opportunity to communicate with some other computers to solve the
problem together. From a technical point of view, delegation of tasks to other
computers is possible because tasks are independent of each other and read/write
(serialization) methods are easily implemented for each of them, however, the
problem was not addressed herein, and only load redistribution within a single
computer was implemented.

Described algorithm is suitable for distributing production tasks, but a dif-
ferent algorithm is needed to distribute reduction tasks. Indeed, when executable
objects come in pairs consisting of the child and its parent, all children of the
parent must be executed on the same server so that no race condition takes place,
so it is not possible to distribute the task on an arbitrary server but a particular
server must be chosen for all of the child tasks. One possible way of choosing



a server is by applying a simple hashing function to parent’s memory address.
Some sophistication of this algorithm is possible, e.g. predicting memory allo-
cation and deallocation pattern to distribute reduction tasks uniformly among
servers, however, considering that most of the reduction tasks in tested program
were simple (the reason for this is discussed in Section 3.1) the approach seemed
to be non viable and was not implemented. So, simple hashing algorithm was
used to distribute reduction tasks among servers.

To summarize, recursive load distribution algorithm by default works as
round-robin algorithm and when a reasonable change of task execution time
is detected it automatically distributes the load in accordance with task metric
distribution. Also, if there is a change in processor performance it is taken into
account by relating its performance to other processors of computing system.
Finally, if a task stays too much time in a queue it is distributed once again to
match current distribution function.

3 Evaluation

Event-driven approach was tested on the example of hydrodynamics simulation
program which solves real-world problem [3–6]. The problem consists of gen-
erating real ocean wavy surface and computing pressure under this surface to
measure impact of the external excitations on marine object. The program is
well-balanced in terms of processor load and for the purpose of evaluation it
was implemented with introduced event-driven approach and the resulting im-
plementation was compared to existing non event-driven approach in terms of
performance and programming effort.

Event-driven architecture makes it easy to write logs which in turn can be
used to make visualization of control flow in a program. Each server maintains
its own log file and when some event occurs it is logged in this file accompanied
by a time stamp and a server identifier. Having such files available, it is straight-
forward to reconstruct a sequence of events occurring during program execution
and to establish connections between these events (to dynamically draw graph
of tasks as they are executed). Many such graphs are used in this section to
demonstrate results of experiments.

Generation of a wavy surface is implemented as a transformation of white
noise, autoregressive model is used to generate ocean waves and pressures are
computed using analytical formula. The program consists of preprocessing phase,
main computer-intensive phase and post-processing phase. The program begins
with solving Yule-Walker equations to determine autoregressive coefficients and
variance of white noise. Then white noise is generated and is transformed to
a wavy surface. Finally, the surface is trimmed and written to output stream.
Generation of a wavy surface is the most computer-intensive phase and consumes
over 80% of program execution time (Figure 7) for moderate wavy surface sizes
and this time does not scale with a surface size. So, the program spends most
the time in the main phase generating wavy surface (this phase is marked with
[G0, G1] interval in the graphs). The hardware used in the experiments is listed



in Table 2. The program was tested in a number of experiments and finally
compared to other parallel programming techniques.

3.1 Evaluation of event-driven system

The first experiment consisted of measuring stale cycles and discovering causes
of their occurrence. Program source code was instrumented with profiling di-
rectives and every occurrence of stale cycles was written to the log file. Also
the total stale time was measured. Obtained results showed that stale cycles
prevail in preprocessing and at the end of main phase but are not present in
other parts of the program (Figure 2). The reason for this deals with insufficient
amount of tasks available to solve during these phases which in turn is caused
by global synchronizations occurring multiple times in preprocessing phase and
naturally at the end of a program. Stale cycles in the main phase are caused by
computation performing faster than writing results to disk: in the program only
one thread writes data and no parallel file system is used. Further experiments
showed that stale cycles consume at most 20% of the total execution time for 4
core system (Table 1) and although during this time threads are waiting on a
mutex so that this time can be consumed by other operating system processes,
there is also an opportunity to speed up the program. Considering file output
performance stale cycles can only be reduced with faster storage devices com-
bined with slower processors or with parallel file systems combined with fast
network devices and interconnects. In contrast, the main cause of stale cycles in
preprocessing phase deals with global synchronization and to minimize its effect
it should be replaced by incremental synchronization if possible.

core 0

core 1

core 2

core 3

0 8 16 24

G0 G1

t, s

Fig. 2: Occurrences of stale cycles in preprocessing and at the end of the main
computational phase of a program. Range [G0, G1] denotes computationally in-
tensive phase.

The next experiment consisted of measuring different types of overheads in-
cluding profiling, load balancing, queuing and other overheads so that real per-
formance of event-driven system can be estimated. In this experiment, the same
technique was used to obtain measurements: every function causing overhead was



instrumented and also the total time spent executing tasks and total program
execution time was measured. As a result, the total overhead was estimated to
be less than 0.1% for different number of cores (Table 1). Also the results showed
that reduction time is smaller than the total time spent solving production tasks
in all cases (Table 1). It is typical of generator programs to spend more time
solving data generating production tasks than solving data processing reduction
tasks; in a data-centric program specializing in data processing this relation can
be different. Finally, it is evident from the results that the more cores are present
in the system the more stale time is introduced into the program. This behavior
was explained in the previous experiment and is caused by imbalance between
processor performance and performance of a storage device for this particular
computational problem. To summarize, the experiment showed that event-driven
system and recursive load distribution strategy do not incur much overhead even
on systems with large number of cores and the program is rather code-centric
than data-centric spending most of its execution time solving production tasks.

Classifier Time consumer Time spent, %

4 cores 24 cores 48 cores

Problem solution Production tasks 71 33 19
Reduction tasks 13 4 2

Stale time Stale cycles 16 63 79

Overhead Load distribution overhead 0.01 0.0014 0.0017
Queuing overhead 0.002 0.0007 0.0005
Profiling overhead 0.0004 0.0004 0.0003
Other overheads 0.06 0.03 0.02

Table 1: Distribution of wall clock time and its main consumers in event-driven
system. Time is shown as a percentage of the total program execution time.
Experiments for 4 cores were conducted on the system I and experiments for 24
and 48 cores were conducted on the system II from Table 2.

In the third experiment, the total number of production tasks solved by the
system was measured along with the total number of task resubmissions and it
was found that there is high percentage of resubmissions. Each resubmission was
recorded as a separate event and then a number of resubmissions for each task
was calculated. The experiment showed that on average a total of 35% of tasks
are resubmitted and analysis of an event log suggested that resubmissions occur
mostly during the main computational phase (Figure 3). In other words 35% of
production tasks stayed in a queue for too long time (more than an average time
needed to solve a task) so underlying computer was not capable of solving tasks
as fast as they are generated by the program. This result leads to a conclusion
that if more than one computer is available to solve a problem, then there is a



natural way to determine what part of this problem requires multiple computers
to be solved. So, high percentage of resubmissions shows that machine solves
production tasks slower than they are generated by the program so multiple
machines can be used to speed up problem solution.

core 0

core 1

core 2

core 3

0 8 16 24

G0 G1

t, s

Fig. 3: Event plot of resubmission of production tasks staying in a queue for too
long time. Range [G0, G1] denotes computationally intensive phase.

In the final experiment overall performance of event-driven approach was
tested and it was found to be superior when solving problems producing large
volumes of data. In the previous research it was found that OpenMP is the
best performing technology for the wavy ocean surface generation [3], so the
experiment consisted of comparing its performance to the performance of event-
driven approach on a set of input data. A range of sizes of a wavy surface was
the only parameter that was varied among subsequent program runs. As a result
of the experiment, event-driven approach was found to have higher performance
than OpenMP technology and the more the size of the problem is the bigger
performance gap becomes (Figure 4). Also event plot in Figure 5 of the run
with the largest problem size shows that high performance is achieved with
overlapping of parallel computation of a wavy surface (interval [G0, G1]) and
output of resulting wavy surface parts to the storage device (interval [W0,W1]). It
can be seen that there is no such overlap in OpenMP implementation and output
begins at point W0 right after the generation of wavy surface ends at point G1.
In contrast, there is a significant overlap in event-driven implementation and in
that case wavy surface generation and data output end almost simultaneously
at points G1 and W1 respectively. So, approach with pipelined execution of
parallelized computational steps achieves better performance than sequential
execution of the same steps.

Although OpenMP technology allows constructing pipelines, it is not easy
to combine a pipeline with parallel execution of tasks. In fact such combination
is possible if a thread-safe queue is implemented to communicate threads gen-
erating ocean surface to a thread writing data to disk. Then using omp section
work of each thread can be implemented. However, implementation of parallel
execution within omp section requires support for nesting omp parallel direc-



0

20

40

0 10
7

2�10
7

3�10
7

T
im

e
, 

s

Problem size

OpenMP
Event-driven

Fig. 4: Performance comparison of OpenMP and event-driven implementations.

tives. So, combining pipeline with parallel execution is complicated in OpenMP
implementation requiring the use a thread-safe queue which is not present in
OpenMP standard.

Event-driven

OpenMP

0 10 20 30 40

Time, s

W0 W1

W0 W1

G0 G1

G0 G1

Fig. 5: Event plot showing overlap of parallel computation [G0, G1] and data
output [W0,W1] in event-driven implementation. There is no overlap in OpenMP
implementation.

To summarize, event-driven programming approach was applied to a real-
world high-performance application and it was shown that it incurs low overhead,
but results in appearance of stale periods when no problem solving is performed
by some threads. The duration of these periods in the main phase can be reduced
with faster storage equipment and the duration of stale periods in preprocessing
phase can be reduced employing incremental synchronization techniques. Also,
event-driven approach offers a natural way of determining whether program
execution should scale to multiple machines or not, however, viability of such
mode of execution was not tested in the present research. Finally, it was shown
that event-driven approach is more efficient than standard OpenMP technology
especially for large problem sizes and it was also shown that a pipeline combined
with parallel execution works faster than sequential execution of parallelized
steps.



3.2 Evaluation of load distribution strategy

Performance of recursive load distribution algorithm was compared to perfor-
mance of round-robin algorithm and was tested in a number of scenarios with
combinations of homogeneous and heterogeneous tasks and homogeneous and
heterogeneous processors. In each experiment the total execution time and dis-
tributions of task metric and processor metric were measured and compared to
uniform distribution case. All tests were performed on the same system (Table 2)
and each scenario was run multiple times to ensure accurate results. Also, pre-
liminary validation tests were performed to make sure that the algorithm works
as intended. So, the purpose of evaluation was to demonstrate how algorithm
works in practice and to measure its efficiency on a real problem.

Component System

Programming language C++11
Threading library C++11 STL threads
Atomics library C++11 STL atomic
Time measurement routines clock_gettime(CLOCK_MONOTONIC, ...)

/usr/bin/time -f %e

Compiler GCC 4.8.2
Compiler flags -std=c++11 -O2 -march=native

I II

Operating system Debian 3.2.51-1 x86 64 CentOS 6.5 x86 64
File system ext4 ext4

Processor Intel Core 2 Quad Q9650 2×Intel Xeon E5-2695 v2
Cores frequency (GHz) 3.00 2.40
Number of cores 4 24 (48 virtual cores)
RAM capacity (GB) 8 256
RAID device Dell PERC H710 Mini
RAID configuration RAID10
Storage device Seagate ST3250318AS 4×Seagate ST300MM0006
Storage device speed (rpm) 7200 2×10000

Table 2: Testbed setup.

It has already been shown that the algorithm consumes only a small fraction
of total execution time of a program (Table 1), so the purpose of the validation
test was to show algorithm’s ability to switch between different task metric
distributions. The switching is performed when a significant change (more than
three standard deviations) of a task execution time occurs. The test have shown
that the switching events are present in preprocessing phase and do not occur
in the main phase (Figure 7). The cause of the switching is a highly variable
task execution time inherent to preprocessing phase. So, profilers’ resets occur



only when a change of task execution time distribution is encountered and no
switching is present when this distribution does not change.

The purpose of the first experiment was to show that the algorithm is capable
of balancing homogeneous tasks on homogeneous computer and in that case it
works like well-known round-robin algorithm. During the experiment, events of
task submissions were recorded as well as additional profiler data and an event
plot was created. In Figure 7a relative performance of each processor core is
plotted and all the samples lie on a single line in the computational phase. Since
this phase consists of executing tasks of equal metric, the straight line represents
the uniform distribution of tasks among processor cores constituting round-robin
algorithm. So, in the simplest case of homogeneous tasks and processors recursive
load balancing algorithm works as round-robin algorithm.

The purpose of the second experiment was to show that recursive load-
balancing algorithm is capable of balancing homogeneous tasks on heterogeneous
processors and in that case it can distribute the load taking into account per-
formance of a particular processor. Although natural application of such load
balancing is hybrid computer systems equipped with graphical or other acceler-
ators, the experiment was conducted by emulating such systems with a hierarchy
of servers. It was found that load balancing algorithm can recognize performance
of different components and adapt distribution of tasks accordingly (Figure 7b):
I1’s first and second child servers have relative performance equal to 0.75 and
0.25 respectively whereas all children of I2 server have relative performance equal
to 1

3 . Also, this system setup shows performance similar to performance of the
homogeneous computer configuration (Figure 6). So, recursive load balancing al-
gorithm works on heterogeneous computer configurations and the performance
is similar to homogeneous system case.

0

10

20

30

0 10
7

2�10
7

3�10
7

T
im

e
, 

s

Problem size

Case (a)

Case (b)

Case (c)

Case (d)

Fig. 6: Performance comparison of different server configurations. Configurations
are listed in Figure 7.

The purpose of the third experiment was to show that the algorithm is capa-
ble of balancing heterogeneous tasks on a homogeneous system and the experi-
ment showed that performance gain is small. For the experiment the source code
generating a wavy surface was modified so that parts of two different sizes are



generated simultaneously. In order to balance such workload on a homogeneous
system the step should be equal to 1

2in, i = 1, 2, ..., where n is the processor
metric (instead of being equal to 1 when parts have the same size) so that each
processor takes two respective parts of the surface. In the Figure 7c showing
results of the experiment the step reaches its optimal value of 1

2n (0.125 mark),
however, it takes almost 8 seconds (or 40% of the total time) to reach this value.
The first two cases do not exhibit such behavior and the step does not change
during execution. Also, in the course of the experiment it was found that the
step oscillates and to fix this it was smoothed with five point median filter and
the number of samples was doubled. Finally, in subsequent experiments it was
found that the more unique parts sizes are present in the main phase, the more
samples should be collected to preserve the accuracy of the step evaluation, how-
ever, the increase in the number of samples led to slow convergence of the step
to its optimal value. In other words, the more heterogeneous the tasks are, the
more time is needed to find the optimal step value for them.

The purpose of the fourth and final experiment was to show that the al-
gorithm is capable of balancing heterogeneous tasks on heterogeneous system
and results were similar to the previous experiment. System configuration was
the same as in the second experiment. Although, in the Figure 7d showing the
results metrics and steps of both servers reach nearly optimal values, there are
more disturbances in these processes. So, the algorithm works with heteroge-
neous tasks and system but heterogeneity of a system increases variability of
the step. In other words, heterogeneity of a system also increases time needed
to find the optimal step value.

To summarize, from the experiments one can conclude, that the algorithm
works on any system configuration and with any task combination, but requires
tuning for a particular problem. However, experience obtained in the course of
the experiments suggests that not only heterogeneity of tasks and computers
increases the number of samples and convergence time but also there are certain
task size distributions that cannot be handled efficiently by this algorithm and
can extend this time indefinitely. One example of such distribution is linearly
increasing task size. In this case step is always equal to 1/m, where m is the
number of samples, and there is no way to tune the algorithm to balance such
workload. So, the downside of recursive load balancing algorithm is that it is
suitable for closed metric distributions with low variability of the metric and
more general and simple algorithms can be developed. Also, it is evident from
the experiments from the Section 3.1 that in the tested program the dominating
performance factor is balance between the speed of wavy surface generation and
the speed of writing it to storage device. In that case, load balancing algorithm
plays only a second role and any combination of computer and task heterogeneity
demonstrates comparable performance as was depicted in Figure 6.



0 8 16 24

0

0.25

G0 G1

t, s

Resets

I1metric
I�

R

R

R

R

(a) Homogeneous tasks and homogeneous computer case.

0 8 16 24

0

0.75

G0 G1

t, s

0.33
0.25

Resets

I1metric

I2metric

I�

I� R

R R R

(b) Homogeneous tasks and heterogeneous computer case.

0 8 16 24

0

0.125

0.25

G0 G1

t, s

Resets

I1metric

I1step I�

R

R

R

R

(c) Heterogeneous tasks and homogeneous computer case.

0 8 16 24

0
0.125
0.25
0.33

0.75

G0 G1

t, s

Resets

I1metric

I2metric

I1step

I2step

I�

I� R

R R R

(d) Heterogeneous tasks and heterogeneous computer case.

Fig. 7: Event plot of task submissions and relative performance of child servers
recorded at the time of submissions. I denotes “Iserver” and R denotes
“Rserver”. Profiled servers are marked with dashed line.



Conclusions

The main advantage of event-driven approach is its applicability to both hetero-
geneous systems and heterogeneous tasks. This allows a programmer to rely on
the technology to distribute the load on the processor cores evenly. Experiments
showed that this approach works in a wide range of test cases and a real-world ap-
plication. Moreover, in this application it performs better than popular OpenMP
technology.

Apart from being more efficient than OpenMP the biggest advantage of event-
driven approach is the ease of parallel programming. First of all, what is needed
from a programmer is to develop a class to describe each independent task,
create objects of that class and submit them to a queue. Programming in such
a way does not involve thread and lock management and the system is flexible
enough to have even the tiniest tasks executed in parallel. Second, relieving
programmer from thread management makes it easy to debug this system. Each
thread maintains its own log and any of both system and user events can be
written to it and the sequence of events can be restored after the execution
ends. Finally, with event-driven approach it is easy to write load distribution
algorithm for your specific problem (or use an existing one). The only thing
which is not done automatically is decomposition and composition of tasks,
however, this problem requires higher layer of abstraction to solve.

The future work is to extend event-driven approach for distributed and hybrid
(GPGPU) systems and to see if it is possible to cover those cases. The other
possible direction of research is to create declarative language which acts as
higher layer of abstraction and performs decomposition into tasks automatically.

Acknowledgments

Research was carried out using computational resources provided by Resource
Center “Computer Center of SPbU”2 and supported by Russian Foundation for
Basic Research (project N 13-07-00747) and Saint Petersburg State University
(projects N 9.38.674.2013, 0.37.155.2014).

References

1. Joe Armstrong. Making reliable distributed systems in the presence of sodware
errors. PhD thesis, The Royal Institute of Technology Stockholm, Sweden, 2003.

2. Leonardo Dagum and Rameshm Enon. Openmp: an industry standard api
for shared-memory programming. Computational Science & Engineering, IEEE,
5(1):46–55, 1998.

3. A. Degtyarev and I. Gankevich. Wave surface generation using OpenCL, OpenMP
and MPI. In Proceedings of 8th International Conference “Computer Science &
Information Technologies”, pages 248–251, 2011.

2 Official web site: http://cc.spbu.ru.



4. A. Degtyarev and I. Gankevich. Evaluation of hydrodynamic pressures for autore-
gression model of irregular waves. In Proceedings of 11th International Conference
“Stability of Ships and Ocean Vehicles”, Athens, pages 841–852, 2012.

5. A.B. Degtyarev and A.M. Reed. Modelling of incident waves near the ship’s hull
(application of autoregressive approach in problems of simulation of rough seas).
In Proceedings of the 12th International Ship Stability Workshop, 2011.

6. A.B. Degtyarev and A.M. Reed. Synoptic and short-term modeling of ocean waves.
In Proceedings of 29th Symposium on Naval Hydrodynamics, 2012.

7. Kazushige Goto and Robert Van De Geijn. Anatomy of high-performance matrix
multiplication. ACM Transactions on Mathematical Software (TOMS), 34(3):12,
2008.

8. Kazushige Goto and Robert Van De Geijn. High-performance implementation of
the level-3 blas. ACM Transactions on Mathematical Software (TOMS), 35(1):4,
2008.

9. Mark Hapner, Rich Burridge, Rahul Sharma, Joseph Fialli, and Kate Stout. Java
message service. Sun Microsystems Inc., Santa Clara, CA, 2002.

10. Laxmikant V Kale and Sanjeev Krishnan. CHARM++: a portable concurrent
object oriented system based on C++, volume 28. ACM, 1993.

11. Glenn E Krasner, Stephen T Pope, et al. A description of the model-view-controller
user interface paradigm in the smalltalk-80 system. Journal of object oriented
programming, 1(3):26–49, 1988.

12. Laércio L Pilla, Christiane Pousa Ribeiro, Daniel Cordeiro, and Jean-François
Méhaut. Charm++ on numa platforms: the impact of smp optimizations and a
numa-aware load balancer. In 4th workshop of the INRIA-Illinois Joint Laboratory
on Petascale Computing. Urbana, IL, USA, 2010.

13. Steve Vinoski. Advanced message queuing protocol. Internet Computing, IEEE,
10(6):87–89, 2006.

14. Gengbin Zheng, Esteban Meneses, Abhinav Bhatele, and Laxmikant V Kale. Hi-
erarchical load balancing for charm++ applications on large supercomputers. In
Parallel Processing Workshops (ICPPW), 2010 39th International Conference on,
pages 436–444. IEEE, 2010.


